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Population and Health:
An Introduction to
Epidemiology
by Ian R.H. Rockett 

Epidemiology draws on lab sciences as well as social sciences to
learn what determines the health of populations.

Most people are concerned
about their health. When
they are well, they wonder

how to remain that way. Will regular
exercise decrease their risk of cardio-
vascular disease later in life? Will beta-
carotene or vitamin C reduce their
risk of getting cancer? Does living
near overhead power lines increase
that risk? When they, their families, 
or friends are ill, they wonder which
treatments would be best. Is chemo-
therapy more effective than surgery
and radiation in treating cancer? Is
angioplasty more appropriate than
heart bypass surgery for treating
blocked arteries?

Television, newspapers, and maga-
zines fuel this widespread curiosity
about the mysterious world of health
risks and hazards. How dangerous is
radiation exposure? Which popula-
tions face the greatest risks? What are
the risks of injury in an automobile
crash when driving intoxicated versus
driving sober, and how are those risks
modified in cars with airbags?

All too often, discussions of 
these and similar questions are char-
acterized more by ignorance or fear
than by scientific knowledge. But, the
quality of these discussions is being
enhanced as scientific research be-
comes more accessible to the public.
The science of epidemiology is a ma-
jor contributor to this growing body
of knowledge about how to prevent
and treat disease and injury.

What is epidemiology? It may be
formally defined as the “study of 
the distribution and determinants 
of health-related states or events 
in specified populations, and the 
application of this study to control 
of health problems.”1 In other words,
epidemiology is the study of our col-
lective health. Epidemiology offers in-
sight into why disease and injury afflict
some people more than others, and
why they occur more frequently in
some locations and times than in oth-
ers—knowledge necessary for finding
the most effective ways to prevent and
treat health problems.

Photo removed for
copyright reasons.



4

The term “epidemiology” springs
directly from “epidemic,” which origi-
nally referred to communicable dis-
ease outbreaks in humans. Epidemic
is derived from the Greek roots epi
(upon) and demos (people). The third
component of epidemiology, 
the Greek root logos, means study.
Demos and another Greek root,
graphein (to write, draw), combine to
form the term demography, a kindred
population-based science. Not only do
epidemiology and demography share
a linguistic heritage and other histori-
cal origins, they also overlap consider-
ably in their data sources and
research domains.

Epidemiology has a descriptive di-
mension that involves the identifica-
tion and documentation of patterns,
trends, and differentials in disease, 
injury, and other health-related phe-
nomena. This science also has an ana-
lytic dimension, in which the etiology,
or causes, of these phenomena are in-
vestigated. Epidemiology also helps in-
vestigate how well specific therapies
or other health interventions prevent
or control health problems.

Because health is multifaceted, 
epidemiology is interdisciplinary.
Epidemiology is substantively and tra-
ditionally connected to the health and
biomedical sciences such as biology,
chemistry, anatomy, physiology, and
pathology; and it is closely tied to sta-
tistics or, more precisely, biostatistics.
In the search for solutions to health
problems, however, the interdiscipli-
nary net of epidemiology is often cast
beyond these traditional boundaries
to incorporate still other disciplines,
such as social and behavioral sciences,
communications, engineering, law,
cartography, and computer science.
The complexity of health problems
has even spawned specialties within
the discipline, including clinical 
epidemiology, genetic epidemiology,
nutritional epidemiology, reproduc-
tive epidemiology, injury epidemiolo-
gy, environmental epidemiology,
social epidemiology, and veterinary
epidemiology.

Many epidemiologists have earned
degrees in medicine or some other

specialty as well as graduate degrees
or certificates in epidemiology. They
work in diverse occupational set-
tings—including international, na-
tional, and local health agencies and
universities; teaching hospitals; and
private corporations. Epidemiologists
may be found, for example, in the
chemical, pharmaceutical, electronics,
energy, automotive manufacturing,
and air travel industries.

Epidemiology provides a unique
way of viewing and investigating dis-
ease and injury. The keys to under-
standing health, injury, and disease
are embedded in the language and
methods of epidemiology. Many of 
the basic epidemiologic concepts 
are familiar to most people, although
only superficially understood. They
reside in such everyday terms as 
exposure, risk factor, epidemic, and
bias. This Population Bulletin explains
the terms, methods, and materials 
scientists use to study the health of
populations, as well as the historical
underpinnings of the modern-day 
science of epidemiology.

Auspicious Origins
The epidemiologic way of thinking
originated in writings ascribed to 
the Greek philosopher-physician
Hippocrates in the fifth century B.C.
In On Airs, Waters, and Places,
Hippocrates displayed an extraordi-
nary awareness of the impact of envi-
ronment and behavior on personal
well-being.2 In pinpointing these fac-
tors, Hippocrates identified forces
that epidemiologists today recognize
as major determinants of human
health. However, Hippocrates over-
looked the importance of quantifica-
tion, which is necessary for assessing
the nature and severity of health
problems as well as for understanding
their etiology. 

Some 800 years after Hippocrates,
during the third century, the Romans
began to record apparent numerical
patterns in their everyday lives.3 As
part of this work, they developed an
ancient precursor of the life table—a
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table that displays the proportions of
a population surviving to various ages
and the life expectancy for people at
these ages. The Romans used such ta-
bles to aid in computing annuities.
Their table contained a series of five-
year life expectancy calculations for
people ages 20 and older. 

Despite these Greek and Roman
contributions, it was not until the
17th century that the quantification
and manipulation of health data be-
gan in earnest. The most important
advances occurred thanks to the tal-
ent and imagination of the English-
man John Graunt (1620-1674). In his 
pioneering research, Graunt noted
that biological phenomena, such as
births and deaths, varied in pre-
dictable and regular ways. His re-
search laid the groundwork for the
disciplines of both epidemiology and
demography. He observed, for exam-
ple, that male births consistently out-
numbered female births. Graunt
further observed that males no longer
outnumbered females by the time
they reached their childbearing ages.
He attributed this to the greater ten-
dency of males than females to mi-
grate or to die because of war,
execution, or unintentional injury. In
addition to the excess of male deaths,
Graunt detected a relatively higher ur-
ban than rural death rate and season-
al variation in mortality rates. His
work is summarized in Natural and
Political Observations . . . Upon the Bills
of Mortality, which was first published
in England in 1662.4

This publication also laid out an-
other Graunt legacy, a primitive ver-
sion of the life table. About 30 years
later, the famous astronomer Edmond
Halley improved on the life table con-
cept, using data from 1687-1691 for
the city of Breslau, now in Poland.
The first complete life table appeared
much later, in 1815. Its best-known
product is life expectancy at birth,
which is a leading indicator of a popu-
lation’s health status. Epidemiologists
today use life table methodology to
analyze how long a patient with a par-
ticular disease diagnosis or treatment
is likely to survive.5

Founders of Modern
Epidemiology
Two English physicians, John Snow
and William Farr, and a Hungarian
physician, Ignaz Semmelweis, can be
considered the founders of modern
epidemiology because they jointly car-
ried epidemiology beyond description
into analysis or explanation. Indeed,
the epidemiologic legacies of all three
include the crucial concept of hypoth-
esis testing, upon which progress in
any science ultimately depends. Each
man made seminal contributions to
epidemiology, public health, and pre-
ventive medicine. 

John Snow (1813-1858) defied con-
temporary medical thinking and suc-
ceeded in slowing the spread of
cholera in London, which was beset
with cholera epidemics in the late
1840s and again in 1853-1854. This
disease afflicts victims with violent di-
arrhea and vomiting, and it can be fa-
tal. Europe had suffered from
periodic cholera epidemics since at
least the 16th century. During the
mid-19th century, most physicians at-
tributed the disease to miasma—“bad

John Snow’s revolutionary methods for track-
ing the source of cholera led the way for mod-
ern epidemiologists.

Photo removed for
copyright reasons.
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air” believed to be formed from de-
caying organic matter. Snow held a
radically different view. Snow, who was
also well known as the founder of
anesthesiology, suspected that the real
culprit was drinking water contaminat-
ed by fecal waste.

In September 1854, Snow deter-
mined that the cholera deaths in a re-
cent outbreak clustered around a
popular source of drinking water, the
Broad Street pump (see Figure 1). He
shared this finding with local authori-
ties, along with his hunch as to the
cause. His disclosures prompted the
removal of the pump handle, and
thus shut down the suspected disease
source. Shortly thereafter, the Broad
Street outbreak subsided. Because
cholera fatalities were already declin-
ing in London, however, Snow was un-

able to attribute the end of the 
outbreak directly to the closing 
of the pump.

The cholera-water connection re-
mained in doubt only until 1855,
when Snow published the results of
his carefully controlled test of the hy-
pothesis that sewage in drinking water
causes cholera. For this research,
Snow obtained information on
cholera mortality occurring among
300,000 residents of a specified area
of London whose water suppliers
could be identified. Because he could
link the cholera cases to a population
base and because the allocation of the
water source to households seemed
random, Snow’s study has been called
a natural experiment. By walking
door-to-door, Snow acquired the
names of the specific water companies
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servicing the houses where cholera fa-
talities had occurred—an approach to
data collection that scientists now call
shoe-leather epidemiology. Snow’s re-
search demonstrated that the cholera
fatality rate in households receiving
contaminated water was higher than
the rate in households getting cleaner
water. This finding confirmed his 
hypothesis.

Snow’s results were unacceptable
to the medical establishment primari-
ly because they contradicted miasmic
theory. Professional resistance to
Snow’s cholera theory was also related
to his inability to identify and specify
cholera’s disease agent—the essential
causal ingredient. It was not until
1883 that this agent, Vibrio cholerae,
was isolated under the microscope by
the German bacteriologist Robert
Koch. Koch—best known for his 
research on tuberculosis and for con-
firming that “germs” (or microorgan-
isms) cause infectious disease—filled
in the missing piece of the cholera
puzzle.6 Snow’s efforts showed, howev-
er, how epidemiology can play a pre-
ventive role even when the specific
microorganism responsible for a 
disease is unknown.

John Snow’s contemporary,
William Farr (1807-1883), was a
leader in developing health and vital
statistics records for the Office of the
British Registrar General. His many
innovations include the refining of
life table analysis by relating disease
prevention to life expectancy, devising
standardized measures to capture oc-
cupational and residential differences
in mortality, and creating a system to
classify disease and injury.7 His classifi-
cation system was the forerunner of
the International Classification of
Diseases (ICD), the standard system
used throughout the world today to
record the causes of mortality and
morbidity (or the occurrence of 
disease).

Like Snow, Farr conducted an ex-
haustive analysis of cholera. He ascer-
tained that cholera death rates were
inversely related to altitude. But, mis-
led by miasmic theory, Farr erred in
concluding that altitude was causally

connected to water contamination,
and therefore to the spread of
cholera. Farr provided the mortality
data for the more famous Snow study
of cholera in London, a testimony to
his consummate professionalism. Farr
also later confirmed the Snow hypoth-
esis by showing that a specific water
company had negligently marketed
and supplied the unfiltered water
through which cholera bacteria had
been transmitted. 

Ignaz Semmelweis (1818-1865), the
third founder of modern epidemiolo-
gy, helped revolutionize hospital prac-
tices because of his discoveries about
the causes of infections. Before the in-
troduction of antibiotics and high
standards of personal hygiene, noso-
comial (or hospital-acquired) infec-
tion was so common that hospitals
were hazardous places to seek health
care. Medical and hospital hygiene
practices were dramatically improved
thanks to the work of Semmelweis in
the maternity wards at the General
Hospital in Vienna.8 Maternal mortali-
ty from puerperal (childbirth) fever
often reached epidemic heights in
Europe between the 17th and 19th
centuries. Between 1841 and 1846,
puerperal fever at times killed up to
50 percent of the women giving birth
in the General Hospital’s maternity
wards staffed by medical students. The
average fatality rate in these wards was
about 10 percent in the 1840s—three
times higher than the rate in a second
set of maternity wards staffed by mid-
wifery students.

While pursuing an obstetrical resi-
dency at the General Hospital in the
late 1840s, Semmelweis became con-
cerned about the problem of puerper-
al fever. He was intrigued by the vastly
different maternal mortality rates in
the two sets of wards. He hypothesized
that the differential resulted from the
failure of medical students to cleanse
their hands after dissecting unrefrig-
erated cadavers just before examining
maternity patients. He believed that
puerperal fever was a septicemia, a
form of blood poisoning. His belief
arose from observing the similarity be-
tween symptoms of the mothers who

Ignaz
Semmelweis’ 
discoveries
helped 
revolutionize 
hospital 
practices.
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died of puerperal fever and those of a
colleague who died of illness associat-
ed with a knife wound sustained while
performing an autopsy. 

Semmelweis reached his conclu-
sion after he logically refuted a series
of alternative explanations: soiled bed
linen, crowding, atmospheric condi-
tions, poor ventilation, and diet. None
of these factors differed between the
two maternity wards. This strength-
ened his original hypothesis that the
disease was transmitted through the
medical students. To test his hypothe-

sis, Semmelweis insisted that the stu-
dents and other medical personnel in
his wards scrub their hands in soap
and water and then soak them in
chlorinated lime before conducting
pelvic examinations. Within seven
months of this controversial interven-
tion, puerperal fever fatalities in the
ward plummeted tenfold, from 120
deaths per 1,000 births to 12 deaths
per 1,000 births. For the first time, the
mortality rate in the wards staffed by
medical students dipped below that in
the wards of the student midwives.

The medical community in Europe
and the United States—still heavily in-
vested in miasmic theory—rejected
Semmelweis’ powerful evidence that
puerperal fever was transmitted
through direct physical contact be-
tween caregiver and patient. The U.S.
medical establishment had ignored an
earlier warning about the contagious
nature of puerperal fever given by
Oliver Wendell Holmes Sr., the cele-
brated physician and author.9 Some
support for a miasmic explanation of
the disease lingered even after the
1870s, when Louis Pasteur isolated its
bacterial agent.10

Demographic and
Epidemiologic
Transitions
Disease patterns have changed dra-
matically in the industrialized world
since the era of Snow, Farr, and
Semmelweis. Chronic diseases, such as
cancer and heart disease, displaced
communicable diseases as the leading
causes of mortality and morbidity in
industrialized nations.11

In 1900, the three leading causes
of death in the United States were
pneumonia, tuberculosis, and diar-
rhea and enteritis (see Table 1). All
are communicable diseases.
Collectively they accounted for nearly
one-third of all deaths at the begin-
ning of the century. In 1998, the top
three causes were all chronic diseases:
heart disease, cancer, and stroke.

Table 1
Top 10 Causes of Death in the
United States, 1900 and 1998

Cause of Deaths per Percent of
Rank death 100,000 all deaths

1900

1 Pneumonia 202 12
2 Tuberculosis 194 11
3 Diarrhea and

enteritis 140 8
4 Heart disease 137 8
5 Chronic nephritis

(Bright’s disease) 81 5
6 Unintentional

injury (accidents) 76 4
7 Stroke 73 4
8 Diseases of

early infancy 72 4
9 Cancer 64 4
10 Diphtheria 40 2

1998
1 Heart disease 268 31
2 Cancer 199 23
3 Stroke 59 7
4 Lung diseases 42 5
5 Pneumonia and

influenza 35 4
6 Unintentional

injury (accidents) 35 4
7 Diabetes 24 3
8 Suicide 11 1
9 Nephritis, 

kidney diseases 10 1
10 Liver diseases 9 1

Source: Robert D. Grove and Alice M. Hetzel, Vital
Statistics Rates of the United States, 1940-1960
(Washington, DC: U.S. GPO, 1968); and National
Center for Health Statistics, National Vital Statistics
Report 47, no. 25 (1999): 6.
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Together they were responsible for 
61 percent of all U.S. deaths. These
three diseases also numbered among
the top 10 killers in 1900, but then
they accounted for less than one-sixth
of the death toll.

Epidemiologists refer to this secu-
lar, or long-term, change in disease
and mortality patterns as the epidemi-
ologic transition, adapting terminolo-
gy developed earlier by demographers
to describe the demographic transi-
tion. The four-stage demographic
transition model describes a process
during which slow or stagnant popu-
lation growth gives way to a period of
rapid population growth and then re-
verts to slow or stagnant growth. 

In the pretransitional stage, both
fertility and mortality rates are high.
Mortality rates rise higher during in-
termittent epidemics, wars, and
famines. During the early transition,
the death rate plummets while the
birth rate remains high. Fertility’s de-
cline occurs in the late transition
stage. Finally, in the post-transitional
stage, fertility rates converge with
mortality rates. The near equilibrium
between birth and death rates that oc-
curred in the pretransitional stage is
restored. Mortality rates are low and
constant, while fertility rates are low
and fluctuating—often in response to
changing economic conditions.12

The original epidemiologic transi-
tion theory largely parallels the stages
of the demographic transition model,
upon which it is based. It outlines a
progression from the Age of Pesti-
lence and Famine, through the Age of
Receding Pandemics, and culminates
in the Age of Degenerative and Man-
made Diseases (see Figure 2).13

A fourth stage, termed the Hybris-
tic Stage, has been incorporated into
epidemiologic transition theory.14

Hybristic derives from the Greek
word hybris, meaning a feeling of in-
vincibility or overweening self-confi-
dence. The United States and many
other industrialized countries are in
this fourth stage of the epidemiologic
transition, in which personal behavior
and lifestyle influence the patterns
and levels of disease and injury. So-

called “social pathologies” such as
homicide, cirrhosis of the liver, sui-
cide, and HIV/AIDS were among the
leading killers of Americans in the
1980s and 1990s. Tuberculosis is un-
dergoing a resurgence in the United
States, as are several other communi-
cable diseases associated with poverty
and unhealthy lifestyles.15

Like the demographic transition,
the epidemiologic transition reflects
the varying forces of socioeconomic
development, sanitation, and public
health, and, to a much lesser extent,
advances in clinical medicine.16 Socio-
economic factors initiated the epi-
demiologic transition in the United
States and western European coun-
tries—where the transition first be-
gan. Explicit public health measures,
such as immunization, water purifica-
tion, and application of insecticides,
were more important to the achieve-
ment of the transition in non-Western
countries such as Japan and Taiwan
than in the West. Although most of
these public health measures had
been developed in Western countries,
they were introduced after the West’s
mortality rates had already dropped
substantially.

Between 1900 and 1998, life ex-
pectancy at birth rose from 47 to 77
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years in the United States.17 The de-
cline in communicable disease mortal-
ity rates, along with falling birth rates,
increased the share of the elderly in
the U.S. population. Americans ages
65 or older constituted 4.1 percent of
the U.S. population in 1900. By 1998,
they represented three times that
number, or 12.7 percent.18

The predominance of degenerative
and man-made diseases in more devel-
oped countries has transformed the
scope of epidemiology. Although HIV
infection is a notable exception, epi-
demiologists in industrialized coun-
tries today are more likely to study the
morbidity and mortality of chronic
disease than of communicable dis-
ease. In the search for the causes of
chronic diseases such as lung cancer
and heart disease, epidemiologists fo-
cus more attention on environmental
or lifestyle factors than on microor-
ganisms. The long latency period be-
tween exposure to the risk of getting 
a chronic disease and subsequent 
diagnosis complicates this search.
Especially since World War II, epi-
demiologists have devised or adapted
special techniques for collecting and
analyzing chronic disease data that 
address the latency problem.19 These
techniques will be presented in the
section on analytic epidemiology.

Disease Models
How do diseases develop? Epidemiol-
ogy helps researchers visualize disease
and injury etiology through models.
The epidemiologic triad and the web
of causation are among the best
known of these models.

Epidemiologic Triad: Host,
Agent, and Environment
The most familiar disease model, the
epidemiologic triad, depicts a rela-
tionship among three key factors in
the occurrence of disease or injury:
agent, environment, and host (see
Figure 3).

An agent is a factor whose pres-
ence or absence, excess or deficit, is
necessary for a particular disease or
injury to occur. General classes of dis-
ease agents include chemicals such as
benzene, oxygen, and asbestos; mi-
croorganisms such as bacteria, viruses,
fungi, and protozoa; and physical en-
ergy sources such as electricity and ra-
diation. Many diseases and injuries
have multiple agents.

People who are not epidemiolo-
gists often confuse a disease or 
injury agent with its intermediary—
its vector or vehicle. A vector is a 
living organism, whereas a vehicle is
inanimate. The female of one species
of mosquito carries the protozoa 
that are parasitic agents of malaria.
The mosquito is the vector or inter-
mediate host of malaria, but not the
agent. Similarly, an activated nuclear
bomb functions as a vehicle for burns
by conveying one of its agents, ioniz-
ing radiation.

The environment includes all ex-
ternal factors, other than the agent,
that can influence health. These fac-
tors are further categorized according
to whether they belong in the social,
physical, or biological environments.
The social environment encompasses
a broad range of factors, including
laws about seat belt and helmet use;
availability of medical care and health
insurance; cultural “dos” and “don’ts”
regarding diet; and many other fac-
tors pertaining to political, legal, eco-
nomic, educational, communications,
transportation, and health care sys-
tems. Physical environmental factors
that influence health include climate,
terrain, and pollution. Biological envi-
ronmental influences include disease
and injury vectors; soil, humans, and
plants serving as reservoirs of infec-
tion; and plant and animal sources of
drugs and antigens.

Host

EnvironmentAgent

Figure 3
The Epidemiologic Triad
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The host is the actual or potential
recipient or victim of disease or in-
jury. Although the agent and environ-
ment combine to “cause” the illness
or injury, host susceptibility is affected
by personal characteristics such as
age, occupation, income, education,
personality, behavior, and gender and
other genetic traits. Sometimes genes
themselves are disease agents, as in
hemophilia and sickle cell anemia.

From the perspective of the epi-
demiologic triad, the host, agent, and
environment can coexist fairly harmo-
niously. Disease and injury occur only
when there is interaction or altered
equilibrium between them. But if an
agent, in combination with environ-
mental factors, can act on a suscepti-
ble host to create disease, then
disruption of any link among these
three factors can also prevent disease. 

Smallpox was eradicated globally
through this kind of disruption.20

Smallpox is almost always spread by
human face-to-face contact, but is less
contagious than influenza, measles,
chickenpox, and some other commu-
nicable diseases. Health personnel
severed the link between disease
agent and host by isolating each small-
pox case upon diagnosis and then vac-
cinating everyone within a three-mile
radius. This highly effective method,
known as the case-containment and
ring-vaccination strategy, proved 
to be a relatively low-cost way to 
eradicate smallpox.

Web of Causation
Although the epidemiologic triad has
contributed to the understanding of
disease etiology, the process that actu-
ally generates disease or leads to in-
jury is much more complex. This
complexity is better portrayed in a
second model used by epidemiolo-
gists: the web of causation.21

The web of causation was devel-
oped especially to enhance under-
standing of chronic disease, such as
cardiovascular disease. However, it can
also be applied to the study of injury
and communicable disease. The web
of causation de-emphasizes the role of

the agent and highlights other factors
that encourage the onset of disease.
Using this model, scientists can dia-
gram how factors such as stress, diet,
heredity, and physical activity relate to
the onset of the three major types of
cardiovascular disease: coronary heart
disease, cerebrovascular disease
(stroke), and hypertensive disease
(see Figure 4). In addition, the ap-
proach reveals that each of these dis-
eases has a precursor, for example,
hypertension, that can alert a diagnos-
tician to the danger of a more serious
underlying condition.

Compiling
Epidemiologic
Evidence
Models are useful in guiding epidemi-
ologic research, but health scientists
cannot answer the underlying ques-
tions about the causes of disease or 
injury without appropriate data.

Stress Diet

Physical 
activity

Heredity

Hypertension

Stroke

Blood clotting
irregularities

Smoking

Hormones

Obesity

Hardening
of the

arteries

Heart
disease

Hypertensive
disease

Figure 4
Simplified Web of Causation Applied to
Cardiovascular Disease

Note: Some intermediate links were omitted in this example.

Source: Adapted from R.A. Stallones, Public Health Monograph 76 (1966): 53.
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Researchers need a myriad of data 
on the personal and medical back-
grounds of individuals to determine,
for example, whether physicians are
more likely to have hypertension 
than construction workers—and
whether one group is more likely 
than the other to develop a related
disease.

Original data collected by or for 
an investigator are called primary 
data. Because primary data collection
is expensive and time consuming, it
usually is undertaken only when exist-
ing data sources—or secondary
data—are deficient. Most descriptive
epidemiologic studies use secondary
data, often data collected for another
purpose. Analytic epidemiologic stud-
ies usually require primary as well as
secondary data.

Risk Factors and
Outcome Variables
Two core categories of variables are
used in epidemiologic research: risk
factors and health outcome (or health
status) variables.

Risk factors are associated with or
explain a particular health outcome,
such as disease or injury. The term
risk factor embraces direct causes or
disease agents, but it also covers per-
sonal characteristics that make indi-

viduals more or less prone to a partic-
ular disease or injury. Personal charac-
teristics include sociodemographic
factors such as age, gender, and race,
and behavioral factors such as exer-
cise, diet, and use of alcohol and oth-
er drugs.

Health outcome (or health status)
variables measure the presence or ab-
sence of disease, injury, physical dis-
ability, or death. While morbidity and
mortality are the principal outcome
variables used in epidemiologic re-
search, epidemiologists also study a
host of morbidity indicators. These
may include prescription drug use, 
restricted activity days, or work and
school absences because of sickness,
and health care service utilization.
Outcome variables may also consist of
health indicators such as lung func-
tion, blood pressure, cholesterol lev-
els, and mental status.

Major Data Sources
Sources of epidemiologic data are nu-
merous and varied. They include pop-
ulation censuses and surveys, vital
statistics, disease registries, and health
care utilization records.

Censuses
In the United States and other coun-
tries, national censuses are conducted
to obtain an accurate count of the to-
tal population, along with sociodemo-
graphic characteristics such as age,
gender, race, and place of residence.
Census counts often provide the de-
nominator, or the population at risk,
for computing epidemiologic rates
and proportions. Some countries,
such as Sweden, Japan, and Israel,
maintain universal population regis-
ters through which they continually
adjust their population counts in re-
sponse to new “vital” events—includ-
ing births, deaths, marriages, divorces,
military enlistment, imprisonment,
and migration. 

Vital Statistics: Births and
Deaths 
In the United States, nearly every
death is recorded in a national reg-

By linking information on exercise habits to such health outcomes as 
hypertension, researchers can measure the health benefits of physical activity.

Photo removed for
copyright reasons.
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istry. The death certificate completed
for each recorded death is a rich
source of data for epidemiologic re-
search. The certificate contains infor-
mation about the circumstances of
death (time, date, and place), so-
ciodemographic characteristics of the
person who died, and specifics about
the cause of death. These specifics in-
clude the immediate, intervening,
and underlying causes of death, and
other conditions that might have con-
tributed to the death (see Figure 5,
page 14).

Death certificates may be easily re-
trieved through a centralized, com-
puterized system called the National
Death Index (NDI).22 Unfortunately,
death certificates often contain inac-
curate information. These inaccura-
cies are compounded when the
individual preparing the certificate
(generally a physician, medical exam-
iner, or coroner) did not know the
decedent.

The death certificate solicits a 
single underlying cause of death—
stroke, for example—although other
causes, such as malnutrition or pneu-
monia, might have contributed direct-
ly to a given individual’s death. For
the physician or other person com-
pleting the certificate, the decision to
choose stroke as the single underlying
cause of death—rather than one of
the contributing causes—may be 
quite arbitrary. Because of this, some
epidemiologists consider all the con-
tributing or other significant condi-
tions included on a death certificate
when doing mortality research.23

Nevertheless, most studies of cause-
specific mortality rely on the single
underlying cause data rather than the
multiple causes. This approach tends
to underestimate the role of diabetes,
nutritional deficiencies, and other im-
portant factors that directly con-
tributed to an individual’s death.
Researchers can check the accuracy of
death certificates and improve their
chances of learning the true underly-
ing cause of death through careful re-
view of medical records; through
interviews with family, friends, and ac-
quaintances of the decedent (verbal

autopsies); and especially through an
autopsy, an invasive physical examina-
tion of the body.

Epidemiologists use a second 
product of the vital registration sys-
tem, the birth certificate, to investi-
gate complications of pregnancy and
childbirth such as spontaneous abor-
tion, low birth weight, preterm birth,
Caesarean delivery, birth defects, ma-
ternal mortality, and infant mortality.
Nearly every U.S. birth is recorded in
a national registry. Birth certificates al-
so contain sociodemographic charac-
teristics, such as age, marital status,
race, and length of gestation, that are 
associated with the health status of
mothers and babies.24 Like death cer-
tificates, however, birth certificates
may contain inaccurate or incomplete
information.

Disease Registries
The best sources of information on
the occurrence of disease in the
United States are population-based
disease registries established to record
cases of certain serious diseases, such
as HIV/AIDS, tuberculosis, and can-
cer.25 These registries are particularly
useful to epidemiologists because dis-
ease cases can be directly related to a
population within specified geograph-
ic or political boundaries; that is, to a
population at risk. Moreover, because
physicians are legally required to re-
port all new cases to the appropriate
registries, the records are relatively
complete and reliable.

One of the most important of
these registries is the Surveillance,
Epidemiology, and End Results
(SEER) program of the National
Cancer Institute. SEER, established in
1972, contains data from five states
and four metropolitan areas that rep-
resent one-tenth of the U.S. popula-
tion. It is the most comprehensive
source of cancer data in the United
States. SEER enables researchers to
study national cancer morbidity and
mortality trends and provides data 
for analytic studies into the causes 
of cancer. 

Registries can help health person-
nel detect epidemics by revealing an

The best sources
of information on
the occurrence of
disease in the
United States are
population-based
disease registries.
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Figure 5
Standard U.S. Death Certificate
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unanticipated sharp rise in disease or
injury rates. Registries can also facili-
tate the planning, implementation,
and evaluation of disease and injury
control programs.

Health Surveys
Health surveys are another valuable
source of epidemiologic data.26 One
prime example is the National Health
Interview Survey (NHIS or HIS), con-
ducted on behalf of the U.S. National
Center for Health Statistics. The HIS
provides an annual snapshot of
Americans’ health status and patterns
of health service utilization. Each year,
the HIS surveys up to 47,000 house-
holds representing 125,000 individu-
als to obtain information on the
frequency of medical visits and short
hospital stays and on special topics
such as smoking habits or knowledge
and attitudes about HIV/AIDS. Some
surveys, such as the National Health
and Nutrition Examination Survey
(NHANES), incorporate medical 
examinations to complement informa-
tion on personal attributes, knowl-
edge, attitudes, beliefs, and behavior.

Health surveys combine flexibility
with a capacity to penetrate hard-to-
reach populations, such as the inner-
city poor and rural mountain
inhabitants. Surveys can also elicit in-
formation on sensitive topics, such as
use of contraceptives or illegal drugs.
They provide data important for iden-
tifying high-risk populations and plan-
ning health intervention programs.

Survey results can be generalized
to a larger population only if the sam-
pling units are representative of that
population—that is, each individual,
household, hospital, or other sam-
pling unit in that population has a
known chance of being included in
the survey. There are various methods
for obtaining representative sample
units, including simple random sam-
pling, systematic sampling, stratified
sampling, and cluster sampling.27

Regardless of the method of sam-
pling, all surveys contain sampling 
error. Researchers often publish 
estimates of sampling error along 
with survey results.

The types and wording of ques-
tions also influence the results.
Researchers usually take great care to
ensure that survey questions are valid
(they measure what they purport to
measure) and reliable (they measure
the same thing when they are asked of
different respondents or when asked
by different interviewers).

The way the survey is conducted af-
fects the response rate—the percent
of the sample responding to a survey.
Rates are usually higher when inter-
viewers conduct the survey in person
rather than over the telephone or
through the mail. The response rate
for a survey is another indication of
whether the results truly apply to the
study population. Nonrespondents of-
ten differ from respondents in critical
ways. Young adults (especially young
single men), the poor, and members
of ethnic minorities, for example, are
less likely than other people to re-
spond to a survey. Hence, these
groups often are underrepresented in
survey research. Response rates are
generally calculated for each survey
item and for the survey as a whole 
to guide analysts in interpreting 
the results.

Health Care Utilization Records 
Records of professional encounters
between patients and health care
providers are known as utilization da-

Information about a baby’s birth, such as birth weight, complications dur-
ing delivery, and general health status are recorded on the birth certificate,
along with information about the mother.

Photo removed for
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ta. Hospital discharge records, which
are based on inpatient medical charts,
are the most prominent type of uti-
lization data. Discharge records allow
hospitals to evaluate the effectiveness
and outcome of a patient’s treatment.
Computerized discharge systems, 
such as the Professional Activity Study
(or PAS) and the Uniform Hospital
Discharge Data Set (or UHDDS), are
more useful for epidemiologic re-
search, however. These standardized
systems permit researchers to com-
pare hospitals, for example, according
to the proportion of patients admitted
who had private health insurance or
who died while under care. Compar-
isons can extend to other characteris-
tics of patients, such as age, gender,
race, or reason for admission.

The value of utilization data is af-
fected by the feasibility of connecting
them to a population at risk, ability to
distinguish new cases from repeat cas-
es, completeness of reporting, and
quality of data. 

Supplemental Sources
Scientists may use various other
sources of data in health research.
They sometimes obtain data, for 
example, from the mass media, 

insurance companies, work sites, 
police, schools, social workers, 
and psychologists.

Linking Data Records
When researchers link records from
different sources, they may obtain
valuable clues about a health prob-
lem. Knowledge of homicide in a
community, for example, is expanded
if autopsy records or death certificates
are individually matched with police
and court records. By exploring the
nature of the relationship between
victims and assailants, epidemiologists
and criminologists become better
equipped to help prevent future
homicides or assaults. Similarly, with
an essentially closed health-care sys-
tem, such as the National Health
Service in the United Kingdom or a
health maintenance organization
(HMO) in the United States, family
medical records can be linked to show
how health problems in parents may
affect their children. One such study,
using HMO medical records on intact
nuclear families, demonstrated that
children with an alcoholic parent
faced a higher risk than other chil-
dren of injury and of emotional and
psychosomatic problems.28

Electronic storage of administrative
and health records has increased the
potential for linking records from
myriad sources, opening up rich pos-
sibilities for new epidemiologic re-
search. These exciting new prospects
for enhancing public health must be
balanced, however, against the impor-
tance of protecting the privacy of the
individual.

Epidemiology draws on many di-
verse data sources. Some are readily
available and accessible, while others
can be accessed only after prolonged
negotiations with those responsible
for the data or after ensuring the con-
fidentiality of individuals’ records.
Still other sources need to be specially
created, which may require careful
negotiations to elicit cooperation
from the targets of the research as
well as the people or institutions 
that control access to the subjects. 
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In general, the hurdles to collecting
data for analytic epidemiologic re-
search are higher than for purely 
descriptive research.

Finding Patterns:
Descriptive
Epidemiology
People’s lives seem besieged by health
risks at any given moment, yet the
health environment is relatively be-
nign in most industrialized countries.
Nearly two-thirds of U.S. deaths in
1998 were attributed to heart disease,
cancer, and stroke—all diseases associ-
ated with old age. There is only a
small chance that an individual will
commit suicide, die in a motor vehicle
crash, or be murdered. National-level
figures, however, mask much higher
risks for certain groups of people.
Men ages 75 or older, for example,
turn to suicide at a much higher rate
than men in other age groups in the
United States. This same pattern is
found in many other industrialized
countries. Japanese and German men,
for example, generally have higher
suicide rates than the U.S. men, but
the rates rise at older ages in all three
countries (see Figure 6). In Canada,
reported suicide rates are highest in
the young adult years, but the likeli-
hood of suicide rises again in the old-
est age group.

Teenagers and young adults, on
the other hand, face a higher risk of
dying or being injured in an automo-
bile crash than people in other age
groups. A Rhode Island study in the
1980s showed, for example, that men
ages 15 to 34 and women ages 15 to
24 were much more likely to be hospi-
talized or killed in an automobile
crash than people in other age groups
(see Figure 7). A male’s risk of being
a homicide victim is much higher in
the United States than in other popu-
lous industrialized countries, as shown
in Figure 8.

Predicting health risks is one of 
the prime tasks of epidemiology.

Figure 7
Age-Sex Pyramids for the Rhode Island Population
and Motor Vehicle Trauma Cases, 1984–1985
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Before making predictions about a
given health problem, however, scien-
tists need to learn how frequently it
occurs within a specific population
group or geographic area. Tracking
the occurrence of disease and injury
is the job of descriptive epidemiology.
Descriptive epidemiology shows 
that certain groups face a higher risk
than others; that is, that disease and
injury are not random phenomena. 
It can also identify the risk factors.
Descriptive epidemiology documents
patterns, trends, and differentials in
risk factors and health outcomes. 
This information is critical for 

Box 1
Measures of Frequency

tion during a specific period. The in-
cidence rate (or incidence density or
hazard rate) is usually expressed as
the number of new disease cases oc-
curring within a population at risk of
contracting the disease during a given
period. Theoretically, the population
at risk includes only people who do
not have the disease—the noncases.
Once someone contracts a disease, he
or she leaves the population at risk
(denominator) to join the cases (nu-
merator). Epidemiologists use the no-
tion of  person-time, for example,
person-years, to estimate the amount
of time people are at risk of contract-
ing a disease or other health problem.
If one person is at risk for 10 years,
the number of person-years equals 10.
The number of person-years also
equals 10 if 10 people are at risk for
one year, or if 20 people are at risk
for half a year. The incidence rate
may be expressed as: 

Number of new cases
Incidence = in time period

rate Person-time at risk

If seven members of an at-risk pop-
ulation of 100,000 are diagnosed with
a duodenal ulcer over the course of a
year, then the resulting incidence rate
is 0.00007 cases per person-year. This
rate is more conventionally expressed
as seven cases per 100,000 person-
years. Ideally, the number of person-
years is calculated as the sum of the

Prevalence and incidence represent
two approaches for measuring how
frequently a disease, injury, or other
health-related event occurs in a popu-
lation. Prevalence measures the pro-
portion of individuals in a population
who have a specific health problem at
a particular point in time (for exam-
ple, Jan. 1, 1999) or during a specific
time interval (Jan. 1, 1999, to March
1, 1999). The prevalence of a disease
is expressed as:

Number of people with

Prevalence = health problem (cases)
Total population

The prevalence of lung cancer in
New York for all of 1999 measures the
total number of people in that popu-
lation with lung cancer, including res-
idents who have had the disease for
many years as well as people who were
diagnosed in 1999. They all will re-
main prevalence cases until they die,
recover, or move out of the state. The
size of the population in New York in
1999 (the denominator) changed
during the year because of births and
deaths as well as in-migration and 
outmigration. In this example, the 
appropriate denominator for comput-
ing the prevalence of lung cancer
would be the mid-1999 New York 
population.

Incidence cases are a subset of
prevalence cases, namely, the number
of new cases occurring in a popula-

developing policy; allocating scarce
economic and manpower resources;
and planning, implementing, 
and evaluating prevention and 
treatment programs.

Descriptive epidemiology is a two-
step process. The first step involves
the rather mechanical task of amass-
ing all the facts about a situation or
problem. The second is the more con-
templative step of conceiving a plausi-
ble explanation for why the situation
exists. This second phase, known as
hypothesis formulation, involves ex-
amining all the facts and asking ques-
tions from different perspectives. It is
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time each of the noncases was at risk
of contracting a disease, plus the total
amount of time all the people with
the disease (cases) had remained dis-
ease-free (noncases). If each of the
seven cases in this example were dis-
ease-free for five months, they would
add a total of 35 months (2.9 person-
years) to the person-years at risk.

It is often difficult to track a true
population at risk, especially a large
population. Births, deaths, and moves
in and out of a given area change the
size and composition of the popula-
tion. In addition, the members of a
study population may not cooperate
with the investigators for the entire
duration of a study. For states, coun-
tries, or other large populations, the
incidence rate generally is computed
using the mid-period population
rather than person-time at risk as the
denominator. The rate is therefore
expressed in population units rather
than person-time units. Strictly speak-
ing, such a measure is really an index
or pseudorate, not a rate. A true rate
measures how frequently a phenome-
non (for example, the number of dis-
ease cases) occurs per unit of time.
Rates are dynamic, not static. 

Although prevalence is sometimes
called a prevalence rate, it is not a
true rate because prevalence cases
cannot be related to time at risk for
becoming a case. Unlike incidence
rates, prevalence cannot be used to

study the etiology of disease because
the lack of a person-time dimension
makes it impossible to link disease
cases to risk factors. However, preva-
lence data are valuable to health plan-
ners and administrators who allocate
scarce resources and plan and pro-
vide needed services. Also, incidence
rates are essential for evaluating the
effectiveness of specific interventions
in preventing disease and injury.

If a disease is rare, its incidence
rate is fairly stable over time, and it
lasts for a predictable length of time,
then prevalence can be estimated by
multiplying the incidence rate by the
average duration of the disease:

Average
Prevalence ≈ Incidence rate  x duration

Thus, if a researcher knows the 
value of any two of the three meas-
ures (incidence, prevalence, and aver-
age duration), he or she can estimate
the third.

Another epidemiologic measure 
of frequency is the cumulative inci-
dence, normally expressed as a 
percentage. This measures the per-
centage of individuals in a population
who develop a disease or become in-
jured within a specified time interval.
Cumulative incidence is particularly
useful in investigating an infectious
disease outbreak: 

Cumulative = Number of new casesx 100
incidence Persons at risk

the bridge between descriptive and
analytic epidemiology. Analytic epi-
demiology is responsible for testing
the hypotheses—for addressing the
question of why certain groups are 
at higher or lower risk of a particular
disease or injury than others. 
But before testing a hypothesis, 
researchers must describe the 
problem in standard terms.

Mapping the Parameters
Epidemiologists quantify the health
status of populations by recording the
stock and flow of diseases, injuries,

and other health problems. To do
this, they measure the prevalence 
and incidence of health problems,
and document the who, where, and
when of specific kinds of cases. 

Prevalence and Incidence
Epidemiologists describe the magni-
tude of a health problem in two ways:
in terms of prevalence and incidence
(see Box 1). Prevalence reveals how
many cases exist in a population at a
given time. The incidence rate
records the rate at which new cases
are appearing within that population
over a specific period.
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Prevalence data reveal the extent
of a given health problem and can
help guide decisions about allocating
resources and providing services.
They do not, however, shed light on
possible causes of the health problem
or on whether interventions are effec-
tive in curbing it. Incidence data, by
contrast, can be linked with data on
risk factors and used to investigate the
causes of disease and to evaluate the
effectiveness of disease treatments or
other interventions.

Person, Place, and Time
Knowing the magnitude of disease or
injury is only the beginning of the epi-
demiologist’s work. The next step is to
answer the following three questions:
Who has the disease or injury? Where
did the cases occur? When did they
occur?

Specifying person, place, and time
is crucial for identifying risk groups,
narrowing the search for risk factors,
and targeting and evaluating interven-
tions. People may be identified by so-
ciodemographic characteristics that
promote or inhibit susceptibility to
disease or injury. They may also be
identified by habits or lifestyles that
influence the likelihood of harmful 
or beneficial exposures. Place can be
described geographically (for exam-
ple, by country or state) and institu-
tionally (for example, by type of
school or branch of military service).
The date or time that disease or in-
jury occurred can help document 
secular (or long-term) trends, 
seasonal, and other periodic effects 
or the presence of epidemics 
or case clusters.

Designing Research 
Descriptive studies can be classified
according to three categories of re-
search design: case report, cross-sec-
tional survey, and correlational study.

Case Report and Case Series
The case report is the simplest kind 
of descriptive study. It is written by 
a physician or other health care
provider to describe an exceptional

clinical experience. For example, in
1933, a case report was prepared on 
a child who had recovered from bac-
terial meningitis, an infection of the
coverings of the brain and spinal cord
that, until the appearance of sulpha
drugs, was almost invariably fatal.29

Although most case reports focus on
serious, life-threatening conditions,
some reflect the hazards of popular
pastimes. “Break-dancing neck,”
“Frisbee finger,” and “Space Invaders’
wrist,” for example, have found their
way into the annals of medicine.30

A single case usually raises more
questions than it answers. A series of
similar cases, however, may provide
the basis for a new hypothesis or even
evidence of a new disease (see Box 2,
page 22). AIDS was first identified in
this manner. Epidemiologists from the
U.S. Centers for Disease Control and
Prevention (CDC) were called in
when five young homosexual men in
Los Angeles were diagnosed with
Pneumocystis carinii pneumonia be-
tween October 1980 and May 1981.31

This series of cases was highly irregu-
lar because this form of pneumonia
did not normally affect young, healthy
individuals. Around the same time,
physicians also began finding young
homosexual men afflicted with anoth-
er atypical disease: Kaposi’s sarcoma.
The discovery of these two clusters led
the CDC to initiate the classification
and quantification of AIDS.

Case reports and case series them-
selves cannot demonstrate that expo-
sure to a suspected risk factor causes a
particular health outcome because
they lack an appropriate comparison
or control group. Nevertheless, case
reports can offer clinicians theories
that can be confirmed or refuted by
further study.

It is simpler to investigate a case of
an acute disease than a chronic dis-
ease because of the shorter lag time
between exposure to disease risk and
the onset of the disease. Scientists
find it easier to trace a case of food
poisoning to contaminated chicken
eaten the previous evening in a
restaurant than to trace a lung cancer
case back to employment in a nickel

‘Frisbee finger,’
and ‘Space

Invaders’ wrist,’
for example,

have found their
way into the an-
nals of medicine.
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refinery decades before the diagnosis.
The physician who, after looking at a
mere three cases, detected the con-
nection between angiosarcoma (can-
cer of the blood vessel tissue of the
liver) and previous employment 
in a vinyl chloride plant, was a 
rare exception.32

Cross-Sectional Survey
A population-based health survey is
cross-sectional when the investigators
collect data simultaneously on individ-
uals’ exposure to the suspected risk
factor for a disease and on whether
they have that disease. With these
cross-sectional data, epidemiologists
can find out whether that exposure
was more common in a group of indi-
viduals who have the disease than 
in a comparison group without the
disease. Survey results might show, 
for example, that subjects with
esophageal cancer are twice as likely
to drink alcoholic beverages as are
those without the disease. Similarly,
epidemiologists can compare the in-
tensity of the condition with the in-
tensity of the exposure; subjects with
higher blood-lead levels may be found
to live closer to a battery plant than
those with lower levels. 

Cross-sectional survey data, howev-
er, cannot indicate whether exposure
to disease risk factors preceded the
onset of the disease in an individual
because these data are collected at
one point in time. To address this
problem, surveys are sometimes re-
peated within the same population or
sample. Such a series of surveys,
known as a panel study, go beyond
the purely descriptive to the analytic
dimension of epidemiology. Panel
studies allow analysts to separate the
period of exposure from the time of
disease onset, affording a deeper un-
derstanding of the disease process.

Correlational Study
In a correlational (or ecological)
study, the association between the in-
cidence of injury or disease in a popu-
lation and a suspected risk factor is
examined for a population as a whole,
rather than for individuals. Correla-

tional studies generally use routinely
collected data, such as infant mortali-
ty rates and per capita income. As a
result, they tend to be relatively
cheaper and easier to conduct than
cross-sectional surveys.

Because correlational studies do
not rely on individual-level data, the
relationships between variables that
emerge from such studies may be 
misinterpreted because of the ecologi-
cal fallacy—the attribution of popula-
tion or group characteristics to
individuals within the group.

The ecological fallacy can be illus-
trated using a hypothetical example.
Suppose a correlational study of the
eastern United States shows that, as
the Hispanic share of a state’s popula-
tion rises, the incidence rate of
Alzheimer’s disease also rises. This
finding appears to imply that Hispan-
ics are at greater risk of Alzheimer’s
than other Americans. However, the
finding probably reflects the fact that
some states with relatively old popula-
tions, such as Florida and Rhode 
Island, also have attracted substantial
numbers of Hispanics in recent years.
Elderly people are known to be a
high-risk group for Alzheimer’s dis-
ease; Hispanics are not. In fact, the
Hispanics in Florida and Rhode 
Island are probably less likely to have
Alzheimer’s than other state residents
because many Hispanics are recent

The practice of washing food in a river can be part of the web of
causation that brings disease to humans. 

Photo removed for
copyright reasons.
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Box 2
Epidemics, Outbreaks, and Clusters

An epidemic may be defined as occur-
rence of disease or injury that clearly
exceeds normal levels.1 An epidemic
covering a vast geographic expanse
may be described as a pandemic. The
Spanish flu, which killed 25 million to
50 million people worldwide between
1918 and 1920, is a classic example of
a pandemic.2 The bubonic plague, or
Black Death, which devastated the
population of Europe during the 14th
century, was another pandemic.

Epidemiologists from the U.S.
Centers for Disease Control and
Prevention (CDC) or from state or lo-
cal health departments are frequently
called on to investigate sudden out-
breaks of acute infectious disease that
do not achieve pandemic or epidemic
proportions. One episode reported
extensively in the mass media con-
cerned a 1976 outbreak of Legion-
naire’s disease at a convention hotel
in Philadelphia.3 But because out-
breaks are usually more localized than
epidemics and often involve common
ailments such as salmonellosis, they
typically receive less publicity. Out-
breaks are caused by a shared expo-
sure to a pathogenic source, person-
to-person contagion, or a mix of 
the two.

Epidemiologists generally follow a
specific series of steps when investigat-
ing a disease outbreak.4 Initially, 
disease cases are confirmed by labora-
tory tests or by a physician’s diagnosis.
The incidence rate of the disease is
calculated and compared with rates
from comparable time periods. Cases
need to be categorized by person,

place, and time. Health scientists of-
ten find that personal characteristics
such as age, gender, and ethnicity can
readily distinguish those who have or
have not been affected by the disease.
Identifying place, or the location of
the cases, can pinpoint a source of in-
fection, such as a picnic, university
cafeteria, or fast-food outlet. In the
tradition of John Snow, maps can
prove invaluable in isolating and 
portraying a heavy concentration 
of cases of a particular disease or 
type of injury.

Analysts often graph the cases as a
histogram or frequency polygon. The
time intervals may be months, weeks,
days, or even hours. The shape of the
attack or epidemic curve may reveal
whether there is a common source of
infection or person-to-person trans-
mission. When an outbreak of trichi-
nosis surfaced among Southeast Asian
refugees in Iowa in 1990, a graph of
the number of cases occurring over
10 weeks revealed that most of the
cases were bunched within a few
weeks (see figure). This grouping sug-
gested a single incubation period and
a common source of infection, and it
helped researchers trace the outbreak
to a wedding of a Southeast Asian
couple that took place a week before
the outbreak began.

After compiling and analyzing in-
formation on an outbreak, investiga-
tors formulate a hypothesis that
accounts for every case, the infection
source, and the mode of disease trans-
mission. Researchers compare the cu-
mulative incidence for those people

migrants. Migrants tend to be relative-
ly young, and therefore less likely 
to have Alzheimer’s than older 
individuals. 

Correlational studies can generate
research hypotheses, as will be 
discussed in the next section, but 
analytic studies are necessary to test
them. Analytic studies can avoid the
pitfalls of the ecological fallacy by 
tapping into exposure and disease 
data at the individual level and 

documenting the timing and 
sequence of events.

Formulating a Hypothesis
Research hypotheses rarely spring
from the intuitive genius of a scientist.
Formulating a research hypothesis is
often an arduous and methodical
process—involving experimentation
with one approach and then another,
until one fits. There are various ap-
proaches to epidemiologic hypothesis
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who were exposed to the suspected
risk factor with the cumulative inci-
dence of those who were not exposed.
Investigators’ conclusions based on
the weight of the accumulated evi-
dence are then written up in a report.
Control measures need to be applied
as soon as possible after an outbreak
begins to minimize the number of 
victims. 

An outbreak investigation may be
initiated by an analytic study. In the
Iowa trichinosis example, a case-con-
trol study enabled the investigators to
ascertain which of three social events
was the source of the contaminated
pork whose consumption triggered
the outbreak.

Clusters of noninfectious health
events, including youth suicides,
childhood leukemias, and birth de-
fects, sometimes occur in local com-
munities. CDC defines a cluster as “an
unusual aggregation, real or per-
ceived, of health events that are
grouped together in time and space
and that are reported to a health
agency.”5 CDC has developed a series
of specific guidelines to help health
officials manage and investigate dis-
ease and injury clusters.

References
1. John M. Last, ed., A Dictionary of

Epidemiology, 3d ed. (New York: Oxford
University Press, 1995): 54.

2. Sir MacFarlane Burnet and David O.
White, Natural History of Infectious
Disease, 4th ed. (London: Cambridge
University Press, 1972).

3. David W. Fraser, Theodore F. Tsai,
Walter Orenstein, W.E. Parkin, H.J.
Beecham, R.G. Sharrar, J. Harris, G.F.
Mallison, S.M. Martin, Joseph E.
McDade, C.C. Shepard, and P.S.
Brachman, “Legionnaire’s Disease:
Description of an Epidemic of
Pneumonia,” New England Journal of
Medicine 297, no. 22 (1977): 1189-97.

4. Robert G. Sharrar, “General Principles
of Epidemiology,” in Preventive Medicine
and Public Health, 2d ed., ed. Brett J.
Cassens (Baltimore: Williams and
Wilkins, 1992): 1-28.

5. U.S. Centers for Disease Control and
Prevention, “Guidelines for
Investigating Clusters of Health Events,”
Morbidity and Mortality Weekly Report 39,
no. RR-11 (1990): 2.

Onset of Illness in Des Moines,
Iowa, Trichinosis Outbreak,
July to September 1990

Source: James B. McAuley, et al, “A Trichinosis
Outbreak Among Southeast Asian Refugees,”
American Journal of Epidemiology 135, no 12 (1992):
1404-10.

formulation. These include:
• the method of difference
• the method of agreement 
• the method of concomitant 

variation
• the method of analogy 
• the method of detection of 

conflicting observations. 
Of these, the first three reflect the

work of 19th-century English philoso-
pher and economist John Stuart Mill,
whose System of Logic revolutionized

the application of inductive reasoning
to the natural world.33 Although the
terms may seem intimidating, they
are really a formal description of the
way people subconsciously draw con-
clusions about cause and effect in
their everyday lives.

The method of difference exam-
ines the differences among groups for
clues as to why the groups’ disease
rates or other health problems vary.
For example, the United States has
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relatively lax gun control laws and
high homicide rates. Canada, Ger-
many, and Japan, in contrast, have far
lower homicide rates and they have
stringent gun control laws and lower
rates of firearm ownership. It may
seem reasonable to conclude that the
gun laws account for the differences
in homicide rates shown in Figure 8
(page 17)—a position adopted by
many gun-control advocates in the
United States. Without further data,
however, this conclusion remains a hy-
pothesis. Researchers cannot yet rule
out alternative explanations for the
higher U.S. homicide rates—for ex-
ample, national differences in income
inequality, illicit drug use, racial het-
erogeneity, and discrimination.

The method of agreement looks
for commonality in groups that show
the same health problem. AIDS, for
example, showed up among intra-
venous drug users, hemophiliacs, and
recipients of blood transfusions at far
higher rates than among the general
population. This suggested that the
causal agent was a virus in the 
bloodstream.

The method of concomitant varia-
tion traces how exposure varies in re-
lation to disease or injury rates. High
national rates of cigarette smoking in
1930 were associated with high lung
cancer death rates 20 years later (see
Figure 9). The 20-year lag in the mor-
tality data reflects the long latency 
period of lung cancer. These correla-
tional data support the hypothesis
that smoking causes lung cancer.

The method of analogy involves ap-
plying a model that characterizes one
kind of disease or injury to another
kind. Scientists know, for example,
that the disease agent for hepatitis B
is transferred through blood prod-
ucts. Thus, when the high-risk groups
for AIDS were found to be the same
as those for hepatitis B, this knowl-
edge led to the hypothesis that AIDS
had a similar cause.

In using the method of detection
of conflicting observations, epidemi-
ologists take special notice when 
different groups of people react dif-
ferently to what appears to be the

same exposure to a health risk. This
was what happened in the case of pel-
lagra, a disease causing skin eruptions
and digestive and nervous disorders,
long thought to be a communicable
disease.34 In the early 1900s, Joseph
Goldberger (1874-1929), a scientist
with the U.S. Public Health Service,
noted that residents of prisons and
asylums suffered from pellagra, while
staff members did not. His observa-
tion led to the hypothesis that the 
disease was not infectious, but was re-
lated to diet. Subsequent laboratory
and field research revealed that pella-
gra was probably caused by a deficien-
cy of meat, vegetables, and other
foods rich in niacin.

Searching for
Cause: Analytic
Epidemiology 
The ultimate purpose of epidemiolo-
gy is the treatment and prevention of
health problems that threaten the
quality and length of people’s lives. To
design, target, and implement success-
ful health interventions, scientists
need to understand the etiology of
specific health problems. This is the
domain of analytic epidemiology.
Analytic studies test hypotheses about
exposure to risk factors and a specific
health outcome.

Analytic Research Designs
There are two main types of research
design for analytic studies: cohort and
case-control.

Cohort Study
A cohort study tracks the occurrence
of a disease (or other health prob-
lem) among groups of individuals
within a particular population. All the
members of the study cohort are as-
sumed to be free of that disease at the
beginning of the study. They are then
grouped according to their exposure
to the risk factor(s) under investiga-
tion. The group of individuals ex-

The method of
agreement looks
for commonality

in groups that
show the same

health problem.
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posed to a risk factor (for example, as-
bestos) is usually compared with an
unexposed group. At the end of the
study, researchers compare the inci-
dence rate for the disease (for exam-
ple, lung cancer) in the exposed
group with the incidence rate in the
unexposed group. The strength of the
association between the exposure and
a specific health outcome is measured
by the rate ratio (see Box 3, page 26).
The rate ratio indicates the likelihood
that those exposed to asbestos would
develop lung cancer relative to the
likelihood that those not exposed
would get lung cancer.

There are two basic categories of
cohort studies: concurrent prospective
studies and historical prospective
studies. In concurrent prospective
studies, subjects are followed from the
beginning of the study for a given pe-
riod of time—sometimes for decades.
In a historical prospective study, data
are collected retrospectively; that is,
after the events have occurred. One
retrospective study conducted in 1977 
examined the association between re-
peated X-rays of the chest and breast
cancer between 1948 and 1975.35

Of the two types of cohort studies,
the concurrent prospective approach
affords investigators greater control
over the quality of the data collected.
The most famous concurrent prospec-
tive study in the United States is the
Framingham Heart Study, which has
been conducted continuously since
1949 in Framingham, Mass. In this
study, researchers are keeping track of
the weight, smoking habits, blood
pressure, cholesterol levels, and other
disease risk factors for a sample of
about 5,000 town residents who were
ages 30 to 59 in 1949. These risk fac-
tors are then related to the develop-
ment of cardiovascular and other
chronic disease among residents in
the sample. The Framingham study
documented the connection between
obesity and the risk of sudden death
from heart attack, stroke, or other car-
diovascular disease. Among other
findings, the study demonstrated that
high blood pressure and chronic hy-
pertension can interfere with an indi-

vidual’s memory, attention span, and
other cognitive functions.36

Another example of a concurrent
prospective study is Health Watch,
which has been conducted in
Australia since 1981. This study is ex-
amining whether people who work
with petroleum products face a
greater risk of developing or dying
from cancer than do other people.37

Intervention Study
Intervention or experimental studies
are a special type of cohort study in
which the investigator modifies risk
factors to test their effects more pre-
cisely. Regular cohort studies, by con-
trast, are purely observational in that
they track natural, not experimental,
situations. Ignaz Semmelweis’ study of
puerperal fever in Vienna’s General
Hospital was an intervention study.
The intervention was the scrubbing
and soaking of medical students’
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hands before they examined the 
hospital patients.

The first record of an intervention
study is found in a Bible story from
the Book of Daniel. Four Jewish
youths in ancient Babylon were
placed on a water and vegetarian diet
for 10 days while training as advisors
to King Nebuchadnezzar.38 Mean-
while, a second group of non-Jewish
trainees consumed the normal diet of
wine and rich food. After 10 days, the
Jewish youths looked superior in phys-
ical appearance to the comparison

(control) group. Consequently, the
Jewish youths were allowed to stay on
the vegetarian and water diet.

Another famous intervention study,
dating from the 18th century, focused
on the high prevalence of scurvy—a
disease characterized by weakness,
anemia, and spongy gums—among
British sailors. Sailors spent many
months at sea without fresh fruits or
vegetables. James Lind, a Scottish
physician, experimented with adding
citrus fruits rich in vitamin C to the
sailors’ diets to prevent scurvy.39 The

Box 3
Measures of Association for Cohort Studies

Cohort studies are usually used to as-
sess the health effects of exposure to
a specific health factor—for example,
whether consuming alcohol increases
the risk of breast cancer in women. In
a cohort study, epidemiologists meas-
ure the strength of the association be-
tween exposure and health outcome
using the rate ratio. The rate ratio (or
relative risk) is the ratio of the inci-
dence rate for the people exposed to
a risk factor to the incidence rate of
those who were not exposed. In the
alcohol/breast cancer example, the
rate ratio measures the likelihood
that a drinker will develop breast can-
cer relative to the likelihood that a
nondrinker will develop breast cancer.
The rate ratio is calculated from the
values shown in the table below:

Rate ratio = a  c
e   f

Rate ratios vary between zero and
infinity. A value of 1 indicates no asso-
ciation between exposure and disease.
A value greater than 1 indicates that
the association is positive (in this ex-
ample, that alcohol use increases
breast cancer risk). A rate ratio less
than 1 signals a negative association

(in this example, that alcohol use 
protects women against breast can-
cer). While the rate ratio measures
the strength of association, it never
proves causality. Scientists need other
compelling, corroborative evidence 
to determine whether a specific 
exposure contributes to a particular
health outcome.

The attributable risk or rate differ-
ence measures the absolute effect of
an exposure believed to contribute to
a specific health outcome. It is the dif-
ference between the incidence rates
of the exposed and unexposed
groups:

Attributable = a  – c
risk      e   f

The attributable fraction or etio-
logic fraction measures the relative ef-
fect of the exposure—for example,
the proportion of breast cancer cases
attributed specifically to alcohol con-
sumption. It is equal to the attributa-
ble risk divided by the incidence rate
for the exposed group. It is often ex-
pressed as a percentage:

Attributable = [ a – c ] a
fraction e f e    

Current Subsequent disease Person-time Incidence 
exposure Yes No units rates
Yes a b e a/e
No c d f c/f
Total a + c e + f

Two-by-Two Table for a Cohort Study
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success of Lind’s experiment brought
limes and lemons into the diet of
British sailors, and gave birth to the
term Limeys, old American slang for
the British. Lind’s intervention study
demonstrated that appropriate nutri-
tion could prevent scurvy.

Modern intervention studies—
termed randomized controlled tri-
als—are more highly controlled than
was the Lind study, and therefore
their results are more conclusive. In
these studies, investigators randomly
assign subjects to either an interven-

tion group or a control group to 
evaluate the effects of an exposure
(intervention) such as a specific dose
of medicine, dietary supplement, or
exercise program.40 Because they are
randomly assigned, the members of
the study group are assumed to be
similar to the members of the control
group. The two groups differ only 
in whether they are exposed to the
medicine, exercise program, or other
intervention that is thought to affect
their health. This approach strength-
ens the validity of the study’s results. 

The preventative fraction is analo-
gous to the attributable fraction. It
measures the impact of a protective
exposure; that is, the proportion of
cases prevented as a result of that ex-
posure. The measure is simply 1 mi-
nus the rate ratio.

From a public health perspective,
there is a strong economic rationale
for allocating fewer resources for con-
trol of a rare lethal exposure than for
a less lethal but more pervasive one.
Because it incorporates the magni-
tude of the exposure or risk factor in
the population, the population attrib-
utable risk (PAR) is valuable for pub-
lic health planning. However, because
researchers rarely have all the neces-
sary data, it is less commonly used.
The PAR represents the difference be-
tween the disease incidence rates in
the total population and those in the
unexposed population:

PAR = (a + c) – c
(e + f) f

This measure can be presented as
a percent (population attributable
risk percent):

Population
= PAR x  100attributable (a + c)  (e + f)

risk percent

In a hypothetical cohort study that
compared a group of healthy smokers
with a group of healthy nonsmokers,
the smokers’ risk of developing lung
cancer was 8.7 times greater than that
of the nonsmokers. The smoking-re-
lated risk of developing this disease
was 1,026 incidence cases per 100,000
person-years of observation. Among
smokers, 88.5 percent of lung cancer
cases could be attributed to smoking.
In the population, smoking account-
ed for 67.4 percent of such cases.

Hypothetical Cohort Study of Cigarette Smoking and Lung
Cancer, With Incidence Rates and Measures of Association
Cigarette Lung cancer Person-years Incidence 
exposure Yes No of observation rates*
Yes 640 3,360 55,200 1,159
No 200 9,800 150,000 133

*Rates per 100,000 person-years

Measures of Association:
Rate ratio = 8.7 Attributable fraction (%) = 88.5%
Attributable risk = 1,026 per Population attributable 

100,000 person-years risk percent = 67.4%
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One important application of the
randomized controlled trial design is
the evaluation of disease screening
programs (see Box 4, page 30). The
research question in this case is
whether screening programs apprecia-
bly prolong the length and improve
the quality of life for the program 
participants.

Intervention studies are usually
classified by whether they focus on
factors that cause disease or other
health problems (putative risk factor
trials), that prevent disease (prophy-
lactic clinical trials), or that cure dis-
ease (therapeutic clinical trials).
Intervention studies may be conduct-
ed with a community rather than the
individual as the unit of analysis (com-
munity trials).

Putative risk factor trials are usually
avoided for ethical reasons unless they
entail reducing or eliminating expo-
sure to substances thought to pose
health risks. One such trial in the
United States was the Multiple Risk
Factor Intervention Trial (MRFIT),
begun during the 1970s.41 MRFIT’s
primary purpose was to find out
whether people could lessen their 
risk of death from heart disease by
ceasing cigarette smoking and lower-
ing their blood pressure and choles-
terol levels. After a seven-year
follow-up period, MRFIT’s results
were inconclusive—probably because
the members of the control group
lowered their blood pressure, choles-
terol levels, and rate of smoking 
about as much as the study group.
Researchers did not know whether
these health improvements in the
control group reflected the advice of
their physicians, media publicity, or
some other factor.

The Physicians’ Health Study
(PHS), started in 1980, is an influen-
tial prophylactic clinical trial in the
United States. Using some 22,000
American physicians as subjects, the
PHS has shown that routine use of
low-dose aspirin protects men against
a first heart attack.42

A similar protective effect for as-
pirin was noted for women in a large
observational cohort study, the

Nurses’ Health Study (NHS), begun
in 1976.43 Even though NHS investiga-
tors followed the health status of near-
ly 122,000 American nurses for six
years, the NHS results were less per-
suasive than those of the much small-
er PHS because of the inherent
limitations of the observational cohort
study design.

A randomized trial of whether as-
pirin can prevent a first heart attack
among women is included in the
Women’s Health Study, started in
1992. The design of this study, similar
to that of the PHS, enables re-
searchers to evaluate more than one
hypothesis.44 Investigators in both the
PHS and Women’s Health Study, for
example, are testing whether beta-
carotene (vitamin A) reduces cancer
risk as well as whether aspirin lowers
the risk of heart disease. Unlike as-
pirin, epidemiologic evaluation of be-
ta-carotene use has yet to show
conclusive health benefits. 

Therapeutic clinical trials are inter-
vention studies undertaken to learn
the most effective treatment for peo-
ple who already have a disease.
Therapeutic trials might assess the ef-
fectiveness of a new drug compared
with a conventional drug in treating
cardiac patients or the success of
chemotherapy versus surgery for can-
cer patients.

Community trials are costly to con-
duct and, because they include rela-
tively few units of study, their results
can be inconclusive. Community trials
were rarely conducted in the past, but
have become more prevalent because
they can provide important guidance
for health and public policy. A com-
munity trial in Rhode Island suggest-
ed that community mobilization,
bartender training, and police train-
ing and enforcement reduced alco-
hol-related injuries, at least in the
short term.45 In the 1940s, an inter-
vention study was carried out in two
New York towns: Newburgh and
Kingston. The public water supply in
Newburgh was treated with fluoride to
test whether this would reduce tooth
decay among children. Over time, the
children living in Newburgh devel-
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oped fewer cavities than children in
Kingston, where the water supply was
not treated with fluoride. The result
of this and similar trials demonstrated
that fluoride in public water supplies
protects children’s teeth from
cavities.46 While fluoridated drinking
water is now commonplace because of
such studies, the alcohol interventions
in the Rhode Island trial need further
evaluation to determine whether they
are effective over the long term.

Case-Control Study
Case-control is the second major type
of analytic study. In a case-control
study, two groups are differentiated by
disease status: the group of cases with
disease and the group of controls
without the disease. Researchers then
reconstruct the exposure history of
the two groups to determine which
factors might explain why one group
developed the disease. For example, if
a case-control study addressed the
question of whether drinking alcohol
increases the risk of breast cancer for
women, then the alcohol consump-
tion history of women with breast can-
cer (the cases) would be compared
with that of women without cancer
(the controls). This approach is the
opposite of the cohort approach,
which begins with disease-free subjects
and follows them forward over time.
The strength of the association be-
tween the disease and risk factors in a
case-control study is measured by the
odds ratio or relative odds, explained
in Box 5, page 32.

Sources of Error 
Analytic studies are subject to errors
that may plague health scientists in
any phase of a study. These errors may
be classified as bias, random variation,
and random misclassification. Bias
and random variation are the more
serious types of error.

Bias
In the context of analytic studies, bias
is defined as any trend in the design,
data collection, analysis, or interpreta-
tion of a study that produces “conclu-

sions … systematically different from
the truth.”47 Numerous types of bias
are identified in the literature, but
they can be reduced to three cate-
gories: selection bias, information
bias, and confounding.

Selection bias is a research design
problem that occurs when study and
comparison groups differ systematical-
ly in a way that distorts the results. For
valid or fair comparisons, the study
and comparison groups should be ho-
mogeneous and differ only with re-
gard to the factor being analyzed.
That is, apples should be compared
with apples, not with oranges. In a co-
hort study, for example, groups
should differ only in their exposure to
risk factors. In a case-control study,
the groups should differ only in their
disease or injury status.

Selection bias is most easily pre-
vented in cohort study designs that
have prospective data collection—es-
pecially clinical trials because they
randomly assign group membership.

Information or observation bias
can occur in the data-collection phase
of both cohort and case-control stud-
ies. It happens in cohort studies when
information on health outcomes is
not collected uniformly for the study
and comparison groups, and in case-
control studies when information on
exposure is not collected uniformly
for cases and controls.

Investigators can help minimize 
information bias by not revealing the
true intent of a study to either study
subjects or data collectors—an ap-
proach called blinding. In a study 
designed to test whether radiation 
exposure was linked to breast cancer,
data were gathered on all types of 
cancer; neither the subjects nor data
collectors knew that the study specifi-
cally concerned breast cancer. If data
collectors had known that the study
was about breast cancer specifically,
they might have been more zealous 
in looking for evidence of radiation
exposure among the subjects with
breast cancer than among the com-
parison group. This zeal could distort
the results.48 Information bias also 
can be reduced by using objective 

Investigators can
help minimize 
information 
bias with an 
approach 
called blinding.
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Box 4
Disease Screening—Promoting Better Health

Epidemiologists help promote health
and prevent disease and injuries in
various ways; for example, helping
prevent epidemics through the inves-
tigation of disease outbreaks, or help-
ing identify healthy lifestyles through
the conduct of long-term studies.
Epidemiologists also contribute to the
evaluation of screening programs, an-
other important prevention activity.
Screening programs usually involve a
single test—ideally safe, inexpensive,
and simple to administer.

Screening programs are aimed at
individuals who currently have no
symptoms of the disease being
screened. The goal is early detection
and treatment—to improve the sur-
vival chances and quality of life of the
individuals found to have the disease.1

Screening programs are most success-
ful and cost-effective for diseases that
are common, that are detectable
through screening tests but not
through a routine physical examina-
tion in their early stages, and that can
be more effectively treated at an earli-
er stage than a later stage.

A screening test is not a definitive
diagnostic test and it can give erro-
neous results. A positive result re-
quires clinical follow-up to verify the
presence of the disease. Some individ-
uals who are free of a disease may
screen positive for it (false positive).

These individuals may be subjected to
unnecessary and costly diagnostic
tests as well as unwarranted personal
stress. Alternatively, individuals with a
disease, especially in an early stage,
may have a negative screening test re-
sult (false negative). A false-negative
result for a communicable disease like
HIV infection could promote the fur-
ther spread of the disease, which car-
ries a serious social cost. Both
false-positive and false-negative
screening results mean added eco-
nomic costs to society—either be-
cause of unnecessary medical tests or
treatment of additional cases of a con-
tagious disease.

To gauge their validity, screening
tests are measured for their sensitivity
and specificity. Sensitivity measures
the ability of the test to correctly as-
certain true preclinical cases of dis-
ease. The test should detect the
disease in an individual before the in-
dividual exhibits any obvious symp-
toms of the disease. A mammogram,
for example, can reveal a breast can-
cer tumor before it is large enough to
be detected in a physical examina-
tion. Sensitivity shows the percentage
of disease cases that are true positives:

= a x 100Sensitivity (%) a + c  

data-collection instruments such as
standardized questionnaires and
forms. Standardized instruments 
encourage data collectors to be con-
sistent in soliciting and recording 
information.

Confounding can occur when a
disease risk factor, such as smoking, 

is both a cause of the disease under
study, such as heart disease, and is 
associated with other risk factors for
the disease, such as heavy alcohol 
consumption. Confounding can
dampen or mask the true relationship
between exposure to a risk factor 
and disease outcome. For example, 

Diagnosis
Screening test Disease No disease Total

Positive a b a + b
(true positive) (false positive)

Negative c d c + d
(false negative) (true negative)

Total a + c b + d N

Two-by-Two Table of Disease Screening Test Results
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Specificity measures the ability of
the test to correctly ascertain true
noncases of preclinical disease—the
true negatives:

= d x 100Specificity (%) b + d  

There is usually a trade-off be-
tween these two measures. If a screen-
ing test is so sensitive that it detects
almost every true case, the test is like-
ly to produce a larger percentage of
false positives than less sensitive tests.
Conversely, if the test is so specific
that nearly every case that tests nega-
tive is truly free of the disease, the test
is likely to miss a larger percentage of
true cases of disease than a less specif-
ic test.

Predictive values measure the like-
lihood that test results for individuals
will prove consistent with their true
disease status. Positive predictive val-
ue (PPV) is the probability that an in-
dividual with a positive screening
result indeed has the disease:

= a x 100PPV (%) a + b  

Negative predictive value (NPV) is
the probability that an individual with
a negative screening result is actually
free of the disease:

= d x 100NPV (%) c + d  

Overall test accuracy is measured
by the proportion of tests in which in-
dividuals are correctly classified as to
their true disease status:

= a + d x 100Accuracy (%) N  

At a minimum, screening pro-
grams need to be evaluated to deter-

mine whether they successfully reduce
mortality from a target disease. Such
evaluations can be seriously distorted
by several types of bias that require
special precautions by investigators.
Because a disease may be detected
earlier in a screening test than
through a physician’s diagnosis, the
known survival time of a cancer pa-
tient taking part in a screening pro-
gram is likely to be longer than for
another patient with an identical con-
dition because the cancer was diag-
nosed earlier—regardless of the
treatment each patient received. This
lead-time bias overestimates the im-
pact of a screening program in pro-
longing the lives of its participants.
Length bias refers to the possibility
that slower progressing cases of a tar-
get disease, such as breast cancer, are
more likely to be detected through
screening than faster progressing 
cases. This bias can exaggerate the 
effectiveness of both a screening 
program and early treatment in 
promoting survival.

Selection bias can distort an out-
come evaluation if the screening
group is made up of volunteers who
were generally healthier and more co-
operative than a comparison group
who are not volunteers. The volun-
teer group would be expected to have
a more favorable outcome, which
might erroneously be attributed to
the screening program.

A randomized controlled trial may
be conducted to evaluate a disease
screening program.

Reference
1. Alan S. Morrison, Screening in Chronic

Disease, 2d ed. (New York: Oxford
University Press, 1992).

a 1990 dietary guideline issued by the
U.S. government was misleading be-
cause it failed to account for the ef-
fects of confounding risk factors on
body weight and health.49 This guide-
line stated that a 25-year-old woman 
5 feet 5 inches tall and under 120
pounds in weight could afford to 

gain 40 pounds up to age 70 without
harming her health. This recommen-
dation runs counter to research sug-
gesting that such a large weight gain
sharply increases the risk of heart 
disease, stroke, and other health prob-
lems. The individuals developing the
dietary guideline had overlooked im-
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portant confounding factors. Probably
the most serious confounder was 
cigarette smoking. Smokers tend 
to be thinner than nonsmokers, and
smoking is associated with many
health problems. Failing to control
for smoking status may have allowed
thinness to mimic an adverse health
risk, making thin people appear 
to be less healthy than heavy people.
Similarly, because anorexia and 
severe alcoholism relate to thinness,
they could also confound the true 
association between body weight 
and ill health.

Confounding is ever present 
in research data. It can never be 
eliminated entirely as an explanation
for an observed association. To mini-
mize confounding, subjects in study
and comparison groups may be
matched on putative or suspected
confounders, such as age and weight,
or they can be selected randomly in
the hope that confounding character-
istics are evenly distributed between
the two groups. During data analysis,
various statistical techniques are used
to test whether the results were affect-
ed by confounding variables.50

Box 5
Measures of Association for Case-Control Studies

In case-control studies, researchers
use several measures to summarize
the association between exposure to a
risk factor and a disease or other
health outcome. The most basic of
these is the odds ratio, which meas-
ures the strength of the association
between the exposure and health out-
come. It approximates the rate ratio,
explained in Box 3 (page 26), when a

disease is rare in the general popula-
tion or when the case-control study
uses incidence cases rather than
prevalence cases (see Box 1, page 18).

The odds ratio represents the ratio
of the odds of cases being exposed to
the odds of exposure among controls:

= a x d
Odds ratio b x c  

Like the rate ratio, the odds ratio
varies between zero and infinity. A val-
ue of 1 indicates there is no associa-
tion between exposure and disease.
The exposure is positively related to
the disease if the ratio exceeds 1, and
negatively related if less than 1.

A disease incidence rate can be
computed in a case-control study only
when an investigator can identify all
new cases in a defined population.
This is possible, for example, where a
case-control study is “nested” within a
cohort study. Case-control studies will
be conducted as part of Health
Watch, the Australian cohort study
mentioned on page 25. 

Because incidence rates usually
cannot be computed for case-control
studies, investigators cannot calculate
the attributable risk. However, the at-
tributable fraction (AF) can be esti-
mated. It is often expressed as a
percentage:

Attributable = Odds ratio – 1
fraction Odds ratio  

The population attributable risk
percent also can be estimated if re-
searchers have other evidence about
the prevalence of exposure within a
population. To estimate this, the pro-
portion of controls exposed (Pe) must
accurately represent the proportion

Prior Current disease status
exposure Yes (case) No (control)
Yes a b
No c d
Total a + c b + d

Proportion exposed a b
a + c b + d

Two-by-Two Table for Case-Control Study
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Random Variation 
Random variation refers to chance
differences between a study group
and a comparison group on a particu-
lar measure. Random variation affects
the external validity of a study—that
is, the ability to generalize results of
the study sample to a larger popula-
tion. By contrast, bias affects internal
validity—the ability to make fair com-
parisons between a study group and a
comparison group.

Random variation can be illustrat-
ed using a hypothetical cohort study
on coffee drinking and stomach ul-

cers. Suppose the study indicated er-
roneously that coffee drinking raises
the risk of getting an ulcer. Assuming
that the study’s measurements were
accurate and that sampling was ran-
dom, the misleading results probably
appeared because the study and com-
parison groups did not accurately 
represent their coffee-drinking and
coffee-abstaining counterparts in 
the population. Random variation 
can be minimized by increasing the
number of participants in the study
and comparison groups (see also 
Box 6, page 34).

of the population exposed to a partic-
ular disease risk:

Population attributable = AF x Pe x 100
risk percent

An AIDS-related case-control study
conducted early in the 1980s, before
the discovery of the HIV virus, illus-
trates how the odds ratio and the 
estimated attributable fraction are in-
terpreted in health research.1 In this
study, male homosexual Kaposi’s sar-
coma cases were matched to controls
on gender, age, sexual preference,
and race. The two groups were then
compared by the level of sexual
promiscuity. Promiscuity was indexed,
respectively, by average number of
sexual partners per month in the 
year prior to disease diagnosis for 
cases, and in an equivalent period 
for controls.

The odds ratio calculated in the
Kaposi’s sarcoma study indicates that
cases were 4.7 times as likely as their
controls to have averaged 10 or more

sexual partners per month during the
observation interval. Expressed as an
estimated rate ratio, an alternative in-
terpretation is that individuals averag-
ing 10 or more sexual partners per
month had 4.7 times the risk of be-
coming afflicted with Kaposi’s sarco-
ma as those averaging fewer partners.
Based on the estimated attributable
fraction, almost four of every five
Kaposi’s sarcoma cases could be at-
tributed to the exposure of 10 or
more sexual partners per month.
Kaposi’s sarcoma, an opportunistic
malignant tumor chiefly involving the
skin, has appeared in excess because
of suppression of the autoimmune sys-
tem through HIV infection.

Reference
1. Michael Marmor, Linda Laubenstein,

Daniel C. William, Alvin E. Friedman-
Kien, R. David Byrum, Sam D’Onofrio,
and Neil Dubin, “Risk Factors for
Kaposi’s Sarcoma in Homosexual Men,”
The Lancet 1 (May 15, 1982): 1083-87.

Number of sex partners Kaposi’s sarcoma
(per month) Yes No
> 10 10 7
0-9 10 33
Total 20 40
Source: M. Marmor, et al. The Lancet 1 (May 15, 1982): 1082-87.

Case-Control Study of Kaposi’s Sarcoma and Sexual
Promiscuity, With Measures of Association

Measures of Association:
Odds ratio = 4.7 Attributable fraction (%) = 78.7%
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Random Misclassification
Random or nondifferential misclassifi-
cation occurs when there is equal 
likelihood that subjects will be misal-
located to the study or to the compar-
ison group. Random misclassification
occurs in a cohort study when persons
who have been exposed to a disease
risk are equally likely to be misallocat-
ed to the exposed or unexposed
group. In case-control studies, misallo-
cation relates to whether subjects 
have the disease under study. In 
either situation, the results underesti-
mate the true association between ex-
posure and disease. In other words,
random misclassification makes 
it less likely that an investigator 
will find a relationship between 
a disease and a cause.

Refining Measures of
Disease and Exposure
Analytic epidemiologic studies 
typically focus on dichotomous 
relationships. Subjects are usually 
categorized as being (1) exposed or
(2) not exposed to a disease and as
(1) having a disease or (2) not having
a disease. These relationships between
exposure status and disease status 
can be presented in simple two-by-two
tables, as shown in Box 3, page 26,
and Box 4, page 30. However, epi-
demiologists sometimes use more 
refined measures to show severity 
of disease or injury and degree of 
exposure. Cancer cases, for instance,
can be ranked for severity using stages
(commonly, stages I to IV). A scoring
system, ranging from 1 to 75, has

Box 6 
Real vs. Chance Associations: P-Values and
Confidence Intervals

Analytic studies are nearly always 
conducted using study samples that 
represent a larger population. Re-
searchers rely on samples under the
key assumption that they can make in-
ferences about a larger population on
the basis of information derived from
a sample. The difference in rates (the
attributable risk) between a study
group and a comparison group com-
puted from sample data is an estimate
of the real difference in the rates of
the population groups they represent. 

Health scientists must confront the
possibility that an observed difference
between the incidence rates of the
study groups and comparison groups
is due to chance. The difference be-
tween the rates of prostate cancer of a
group of smokers and a group of non-
smokers may not reflect a true rate
difference between smokers and non-
smokers in the population. 

Significance testing is a statistical
approach that researchers can use to
assess whether an observed difference
in rates computed from a population
sample represents a true difference in
the population. Before accepting the
possibility that the difference is real,
researchers must eliminate the null

hypothesis, which states that there is
no association between a risk expo-
sure (such as smoking) and a health
outcome (such as prostate cancer).
The result can be expressed as a P-val-
ue, the probability that the difference
is a chance occurrence. 

A P-value of .05 (that is, the proba-
bility that a particular outcome oc-
curred by chance is 5 in 100) is the
conventional cutoff point in signifi-
cance testing. If the P-value equals or
exceeds .05, researchers accept the
null hypothesis and dismiss any differ-
ence observed between the rates of
the study and comparison groups as a
chance occurrence. Researchers
sometimes lower the cutoff point for
statistical significance, say to .01. The
lower cutoff provides a more conser-
vative test of the null hypothesis and
makes it more likely that an observed
difference or association in sample
data will be attributed to chance.

Significance tests, however, can
yield varying results depending on the
sample size. A difference in the inci-
dence rates of study and comparison
groups may not be statistically signifi-
cant in a small study, but may attain
significance if the sample is enlarged.
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been developed to measure the 
severity of injuries.

Exposure to a specific disease risk
factor may be measured more accu-
rately as a continuous variable (for ex-
ample, temperature) or in several
ordinal (ranked) categories, such as
none, moderate, or high. Exposure
variables can be further differentiated
and quantified in terms of available
dose, administered dose, absorbed
dose, and active dose.51 Dose—or
more accurately the active or biologi-
cally effective dose—can be defined as
the “amount of a substance that re-
mains at the biological target (such as
the lungs or stomach) during some
specified time interval.”52 By using re-
fined measures, epidemiologists are
more likely to detect a relationship,

for example, between a specific dose
of a treatment drug and an effect or
response, such as slowing the progres-
sion of a disease.53

Dose-effect, or the health effect of
a specific exposure—to arsenic, for
example—can range from no clinical-
ly detectable signs and symptoms, to a
mild headache, to coma, to death.
Health effects can be further differen-
tiated by kind of disease, such as can-
cer or arthritis, or type of injury, such
as burn or laceration.

Dose-response measures the pro-
portion of an exposed group or popu-
lation that has been clinically
diagnosed with a specific disease or
injury at a given dosage. Dose-re-
sponse has direct relevance to the is-
sues of determining safe exposure

This varying effect of sample size is
one reason that significance testing is
a controversial issue in health re-
search and has lost favor among 
epidemiologists.1

Because of the limitations of signif-
icance tests and P-values, researchers
usually use an alternative statistical
method, the construction of confi-
dence intervals. The confidence inter-
val provides an estimated range for
the true population measure, and it
shows the probability that this meas-
ure falls within a specified range. For
example, in a recent Boston study, in-
vestigators estimated that there was a
95 percent probability that the true
ratio of the rate of occupational in-
jury for postal workers who used mari-
juana to that of postal workers who
did not use marijuana varied between
1.04 and 3.90.2 In other words, the
marijuana users’ risk of occupational
injury was estimated to be between 
4 percent and 290 percent greater
than the risk among nonusers. A 
significance test may have shown 
that the difference in injury rates of
the two groups was statistically signifi-
cant at the .05 level, but this informa-
tion is less useful than the range 

of values produced by the confidence
interval approach.

Like the significance test, the con-
fidence interval can be used to test
the validity of the null hypothesis.
The 95 percent confidence interval
corresponds to the .05 P-value.  If a
rate ratio equal to 1.0 (implying no
association between a risk factor and
a health outcome) falls within the 95
percent interval, the null hypothesis is
supported. If it does not, as in the
study of the postal workers, this gives
researchers the evidence to reject the
null hypothesis. Methods for con-
structing confidence intervals and
conducting significance tests can be
found in any contemporary introduc-
tory biostatistics textbook.
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limits and setting standards, and gen-
eral relevance to safety standards in
the home, work environment, and
recreation areas.54

In its broadest conception, expo-
sure covers all putative causes of, and
risk factors for, a particular health
outcome. Exposure may include bac-
teria, viruses, and toxins, as well as de-
mographics, attitudes, and behavior.
When there are multiple exposures,
they should be examined for syner-
gism; that is, to see if the joint health
risks from these exposures exceed the
sum of the separate risks.

Choosing an Analytic
Research Design
How do epidemiologists decide
whether to conduct a case-control or
a cohort study to research a specific
disease? Their choice will depend on
the relative frequency of disease and
the exposure they want to study,
knowledge of possible causes, and 
the time and resources available for
research. 

Researchers often prefer cohort
studies for investigating diseases that
are relatively common, such as heart
disease. Cohort studies are useful for
studying diseases with an etiology that
scientists already know something
about, such as heart disease and some
cancers. But they may also be used to
follow a population exposed to a rare
disease risk, such as the survivors of
the atomic bomb dropped on
Hiroshima in 1945.

In a cohort study, researchers 
often collect extensive information 
on the personal background and 
exposure history of subjects. These
historical data can provide crucial in-
formation for developing and testing
research hypotheses. 

The cohort design has another cru-
cial advantage over the basic case-con-
trol design—it permits researchers to
separate the time of exposure to
health risk factors from the onset of
disease or other health outcomes.
Furthermore, cohort studies allow re-
searchers to investigate multiple
health effects of an exposure. A hepa-

titis infection can be examined over
the short, intermediate, and long
term as a determinant of acute hepati-
tis, cirrhosis of the liver, and liver can-
cer, respectively. 

Cohort studies have still other
strengths. Cohort data allow re-
searchers to calculate incidence rates
and to compare rates among different
exposure statuses. Multiple risk factors
can be studied or controlled, and data
quality can be monitored and main-
tained at a high standard. 

Because they involve larger num-
bers of subjects, cohort studies have
the disadvantage of requiring more
resources and time than case-control
studies. In addition, the nature and
dose of exposure may change over the
course of the investigation, which can
complicate analysis. However, the co-
hort design is essential for evaluating
disease interventions because it allows
subjects to be randomly assigned to
study and comparison groups.

Epidemiologists usually choose the
case-control study design for research
about very rare diseases, especially
when scientists know little of their eti-
ology. The case-control method was
used to investigate a new neurologic
disease first recognized among new-
born French babies in the early
1970s.55 Researchers discovered that
the “disease” was actually hexa-
chlorophene poisoning resulting from
the use of talcum powder. 

Compared with cohort studies,
case-control studies can be conducted
relatively quickly and cheaply and may
involve relatively few subjects. With a
small sample, researchers can more
easily follow leads on exposure to
multiple risk factors. 

Case-control studies also have
shortcomings. They are highly suscep-
tible to information bias, and it is
sometimes difficult to find an appro-
priate comparison group. Moreover,
researchers cannot calculate inci-
dence rates in a case-control study un-
less it is population-based. However,
case-control studies often provide the
first clues about the etiology of a dis-
ease—clues that can stimulate more
definitive analytic research.

Researchers 
often prefer 

cohort studies 
for investigating 

diseases that 
are relatively

common.
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Assessing Causation
Causation can never really be proved.
However, epidemiologists can ask a 
series of questions to assess the likeli-
hood that a particular exposure caus-
es a given health outcome.56 The first
and most important question is, did
the exposure to the risk factor pre-
cede the onset of the disease? If it 
did not, the answers to the remaining
questions are irrelevant because 
the exposure could not have caused
the disease. 

If researchers can verify that an in-
dividual or group was exposed to a
health risk first, then developed the
disease, they can then gauge the valid-
ity of any causal links between suspect-
ed risk factors and the disease by the
answers to the following questions:
• Is there a strong association be-

tween risk exposure and disease
outcome (for example, as meas-
ured by the rate ratio or odds 
ratio)?

• Is there a dose-response 
relationship?

• Has the association between 
exposure and outcome been
demonstrated at different times
and in different settings, using 
diverse statistical tests?

• Has the association been con-
firmed in animal experiments?

• Does elimination or reduction of
the exposure (for example, ciga-
rette smoking) lead to a decline in
disease risk (for example, risk of
lung cancer or heart disease)?

• Can exposure and outcome be
specified? For example, evidence
of a link between exposure to pe-
troleum products and cancer is 
less informative than evidence of a
dose-response relationship between
exposure to a specific petroleum
product (benzene) and a specific
cancer (myeloid leukemia).

• Does the relationship between ex-
posure and outcome seem consis-
tent with established theory and
knowledge? 
The argument for causation 

becomes more convincing as investi-
gators answer “yes” to more of 
these questions. 

Protocols, Ethics, and
Integrity
Analytic studies demand careful plan-
ning. The protocol—the research
blueprint or road map—is at the
heart of effective planning and execu-
tion of analytic studies.57 The protocol
details the study purpose, objectives,
choice of subjects, ethical issues, 
research design, data collection in-
struments and procedures, computeri-
zation, statistical methods, personnel
needs, time lines, budget, and proce-
dures for disseminating the findings.

Analytic studies often raise ethical
questions, especially when the study
involves medical interventions and
their attendant risks. The risks to peo-
ple participating in the study can be
psychological as well as physical. To
minimize risks to subjects, investiga-
tors try to guarantee their subjects
free and informed consent, privacy,
and confidentiality. Subjects also need
to feel assured that the investigators
are competent and do not have a con-
flict of interest.58 To avoid a breach of
confidentiality or other ethical prob-
lems, the protocols of any epidemio-
logic study involving direct human

Epidemiologists and medical researchers work
together to discover the who, what, where,
and why of specific health problems. 

Photo removed for
copyright reasons.
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participation are usually scrutinized
by impartial institutional review
boards (IRBs) or ethics committees.

Concern about biomedical ethics
can be traced back to publicity sur-
rounding the inhumane medical ex-
periments on prisoners carried out by
the Nazis during World War II. These
experiments included deliberately ex-
posing the prisoners to the communi-
cable disease agents of malaria and
spotted fever or to extremes of tem-
perature and altitude.59 Concerns
about the ethics of these experiments
were reflected in postwar documents
such as the 1948 Declaration of 
Geneva and the 1964 Declaration of
Helsinki. Recently, a number of lead-
ing professional epidemiologic organ-
izations, including the Society for
Epidemiologic Research and the
International Epidemiological Associ-
ation, have formulated their own ethi-
cal guidelines. In 1993 the Council
for International Organizations of
Medical Sciences, prompted by the
need for trials to evaluate HIV/AIDS
vaccines and drugs, released a revision
of International Ethical Guidelines for
Biomedical Research Involving
Human Subjects.60 These guidelines
aim to prevent the exploitation of vul-
nerable research subjects, especially in
less developed countries.

People who believe that the med-
ical atrocities committed in Nazi 
Germany could not happen in demo-
cratic countries are advised to read
the sobering account of the Tuskegee
Syphilis Experiment.61 In this nonther-
apeutic trial begun in 1932 in Alaba-
ma’s Macon County, researchers
followed the progression of tertiary
(late stage) syphilis in more than 400
African American men to evaluate the
complications of the disease if left un-
treated. Highly effective therapy, peni-
cillin, was available by the 1940s, yet
researchers failed to inform the men
that they had syphilis and the men
did not receive treatment. The pre-
dominantly white investigators worked
under the auspices of the U.S. Public
Health Service and in cooperation
with federal, state, and local health of-
ficials, white private physicians, the

African American leadership of the
Tuskegee Institute, and an African
American nurse. The study continued
until 1972, when the researchers’ un-
ethical practices were revealed, which
created a well-publicized scandal. The
Tuskegee study and a number of oth-
er studies where unethical conduct
has been documented62 underscore
the necessity for creating and empow-
ering IRBs to protect human subjects
in epidemiologic research.

Even investigators who scrupulous-
ly adhere to high standards of ethical
conduct and scientific integrity may
produce incompetent research.
Epidemiologic studies that are seri-
ously flawed deserve to be labeled
poor science regardless of the reason
or motivation.63 Poor science can be
prevented or controlled through
proper training and by peer review of
research protocols and of scientific
papers before publication. However,
the fraud and deceit associated with
deliberate disregard for the scientific
method are clearly unethical behavior
and may be harder to detect in the
short run. Ultimately, the inability of
other epidemiologists to replicate
such results will discredit fraudulent
research. The possible damage this
fraud might render to the public im-
age of epidemiologic research may be
more difficult to overcome.

Reconciling
Contradictions: 
Meta-Analysis
Sometimes analytic epidemiologic
studies investigating an identical re-
search question produce contradicto-
ry results.64 In recent years, some
studies have shown that eating oat
bran improved an individual’s health
by lowering blood cholesterol levels;
however, other studies did not con-
firm this finding. A study suggesting
that drinking coffee increased the 
risk of pancreatic cancer was also 
refuted by subsequent research. Con-
tradictory research results such as
these can create confusion in the pub-
lic agencies entrusted with issuing di-
etary guidelines or restricting harmful

Concern about
biomedical ethics

can be traced
back to inhumane

medical experi-
ments carried out

by the Nazis.
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substances. Physicians and other
health professionals who advise pa-
tients are forced to make an educated
guess about which researchers or re-
search results they should follow.

Meta-analysis is a promising solu-
tion to the problems created by con-
tradictory epidemiologic research.
Meta-analysis was introduced in a
rudimentary form by the statistician
Karl Pearson in 1904, but only recent-
ly has evolved into a sophisticated
quantitative technique with general
scientific applications. This technique
involves pooling analytic studies shar-
ing the same research question to
produce a summary conclusion.65

When done correctly, meta-analysis
can provide an objectivity and rigor
that a qualitative review of these 
studies cannot.

Meta-analysis is especially useful for
analyzing the results of the many ran-
domized controlled trials investigating
similar questions. Approximately
10,000 randomized controlled trials
are being conducted in clinical set-
tings worldwide. About 5,000 new tri-
als begin each year.66

A meta-analysis conducted in the
early 1990s entailed pooling 33 trials
involving use of the drug streptoki-
nase in patients hospitalized after a
heart attack.67 The cumulated evi-
dence showed that the drug therapy
reduced related deaths. This research
also showed that time, money, expert-
ise, and human lives could be saved
through meta-analysis. In the meta-
analysis of the streptokinase trials, for
example, the effectiveness of the drug
was well established after data from
the first eight trials were cumulated
and analyzed. In other words, the 25
subsequent trials were unnecessary.

Integrating
Epidemiology 
The 1990s have brought epidemiology
into the public spotlight through a
proliferation of media stories about
epidemiologic studies of risk factors
for chronic disease, communicable

disease, and injury. Epidemiology’s ap-
pearance in the spotlight has been ac-
companied by unprecedented
criticism from epidemiologists and
from those outside the field.68 This, in
turn, has fostered lively debates in
health journals and at epidemiology
conferences. There have been two pri-
mary stimulants. The first has been
conflicting and frequently modest epi-
demiologic findings concerning puta-
tive chronic disease risks, especially
those for cancer. The second has been
the inability of epidemiology to pre-
dict and evaluate threats to human
health from persisting and growing
social inequality and massive global
environmental shifts. 

Risk factor epidemiology, the pre-
dominant form of epidemiology and
the focus of this Population Bulletin,
has been the target of the criticism.
Using the individual as the unit of
analysis, risk factor epidemiology oc-
cupies the middle ground in the sci-
entific assessment of cause-effect
relationships between exposures to
health risks and health states. But 
it is an important point of departure
for epidemiologists as they extend 
the causal search downstream from
the individual level to the molecular
level and upstream to the societal-
environmental level. Scientists label
these downstream and upstream 
domains of epidemiologic analysis 
microepidemiology and macroepide-
miology, respectively.

Operating at the cellular and 
intracellular levels, microepidemiolo-
gy encompasses the specialties of mo-
lecular epidemiology (also a specialty
within toxicology) and genetic epi-
demiology.69 Its debt to microbiology
is profound. The laboratory scientists
who perform microepidemiology are
investigating biochemical disease
mechanisms hitherto hidden in the
black box of risk factor epidemiology.
When the black box paradigm pre-
vails, epidemiologists are left to infer
or reject causal relationships from
knowledge largely confined to the
box’s inputs and outputs.70 Inputs
comprise individual study subjects’ 
sociodemographics and measures of
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their potentially harmful or beneficial
exposures. Outputs are measures of
their health status; for example,
cause-specific incidence and mortality
rates. 

While microepidemiology is 
essential for decoding disease process-
es, risk factor epidemiology helps nar-
row the search for disease agents.
Moreover, it may yield strong circum-
stantial evidence (such as that linking
tobacco smoking in the 1930s with
lung cancer in the early 1950s) that
can motivate effective and pervasive
public health interventions. Modern
risk factor epidemiology has revealed
health hazards to humans from other
exposures entering the body through
the respiratory tract, gastrointestinal
tract, or skin. These hazards include
asbestos, ionizing radiation, and satu-
rated fat.71 Although risk factor epi-
demiology and microepidemiology
can be at odds, they can operate cohe-
sively and effectively. Examples of this
cooperation are the discovery of a
causal connection between HIV-infec-
tion and Kaposi’s sarcoma, and anoth-
er between genes and breast cancer.72

Besides the vagueness of the black
box, a second serious deficiency of
risk factor epidemiology is its tenden-
cy to function in a social, economic,
political, and cultural vacuum.73 What,
when and how much people eat and
exercise; their sexual and reproduc-
tive behavior; their household living
arrangements; their modes of work,
recreation, and transportation; and
their education and health care prac-
tices all partially reflect contextual
forces that transcend the personal
choices they can make. These contex-
tual forces include social-structural
factors like racism, residential segrega-
tion, poverty, and types of political
and economic systems. Responsibility
for examining their population health
effects falls within the emerging do-
main of macroepidemiology.

Advocates for macroepidemiology
envision complex and dynamic causal
webs whose health mysteries will be
unlocked only through sophisticated

theory construction and model build-
ing, with multilevel analyses of data
on individuals and context.74 Further
complicating the big health picture is
rapid population growth that has
pushed world population to 6 billion,
and the industrialization that contin-
ues to exact an enormous toll on such
nonrenewable resources as fresh 
water, stratospheric ozone, oceans,
forests, and arable land.75 Rapid 
population growth and industrializa-
tion work together to severely dimin-
ish the Earth’s biodiversity through
the extinction of many plants and 
animals.76 Unless we better protect
our natural resources, there could 
be substantial reversals in the rising
trend in life expectancy that trans-
formed most national populations 
in the 20th century. These reversals
would occur first in the most recent
beneficiaries of this rising trend, the
less developed countries.

Anthony  J. McMichael, an epi-
demiologist who writes extensively on
likely adverse health effects from cli-
matic, ecological, and environmental
changes, argues compellingly for
macroepidemiology to be proactive.77

Proactive macroepidemiology would
contrast with risk factor epidemiology,
which typically responds reactively to
public and scientific concerns about
the safety of various practices and
products. To anticipate global hazards
and facilitate disease and injury pre-
vention, macroepidemiologists must
use mathematical modeling, and in-
corporate new technologies like digi-
tal communications and geographic
information systems (or GIS). 

The spirited debates of the 1990s
over the limitations of risk factor 
epidemiology have not seriously 
undermined the credibility and 
viability of epidemiology as a science.
But, epidemiology will function opti-
mally as the foundation science of
public health and preventive and 
clinical medicine only if there is 
complete integration of microepide-
miology, risk factor epidemiology, 
and macroepidemiology.

Risk factor 
epidemiology of-

ten functions in a 
social, economic,

political, and
cultural vacuum.



41

References
1. John M. Last, ed., A Dictionary of Epidemiology, 3d ed. (New York: Oxford University Press, 1995): 55.
2. Hippocrates, On Airs, Waters, and Places. Translated and republished in Medical Classics 3 (1938): 19-42;

and Major Greenwood, Epidemics and Crowd-Diseases: An Introduction to the Study of Epidemiology (New
York: Macmillan, 1937).

3. C.F. Trenerry, The Origin and Early History of Insurance, Including the Contract of Bottomry (London: P.S.
King and Son, 1926).

4. John Graunt, “Natural and Political Observations Mentioned in a Following Index, and Made upon the
Bills of Mortality,” in William Petty, The Economic Writings of Sir W. Petty, vol. 2, ed. C.H. Hull (New York:
Augustus M. Kelley, 1964): 314-431.

5.   Edmond Halley, “First Life Insurance Tables,” in The World of Mathematics, vol. 3, ed. James R. Newman
(New York: Simon and Schuster, 1956): 1437-47; and Marcello Pagano and Kimberlee Gauvreau,
Principles of Biostatistics (Belmont, CA: Wadsworth, 1993).

6. Lois N. Magner, A History of Medicine (New York: Marcel Dekker, 1992).
7. Mervyn Susser and Abraham Adelstein, “Introduction,” in William Farr, Vital Statistics: A Memorial

Volume of Selections from the Reports (Metuchen, NJ: Scarecrow Press, 1975).
8. Ignaz Semmelweis, The Etiology, Concept, and Prophylaxis of Childbed Fever, translated by K. Codell Carter

(Madison, WI: University of Wisconsin Press, 1983).
9. Oliver Wendell Holmes, “Medical Essays, 1842-1882,” in Holmes’ Works, vol. 9 (Boston: Houghton,

Mifflin, 1892).
10. Magner, History of Medicine.
11. Matthew T. McKenna, William R. Taylor, James S. Marks, and Jeffrey P. Koplan, “Current Issues and

Challenges in Chronic Disease Control,” 2d ed., in Chronic Disease Epidemiology and Control, eds. Ross C.
Brownson, Patrick L. Remington, and James R. Davis (Washington, DC: American Public Health
Association, 1998): 1-26.

12. Richard A. Easterlin, Population, Labor Force, and Long Swings in Economic Growth (New York: Columbia
University Press, 1968).

13. S. Jay Olshansky, Bruce Carnes, Richard G. Rogers, and Len Smith, “Infectious Diseases—New and
Ancient Threats to World Health,” Population Bulletin 52, no. 2 (Washington, DC: Population Reference
Bureau, 1997): 10-11.

14.  Richard G. Rogers and Robert Hackenberg, “Extending Epidemiologic Transition Theory: A New
Stage,” Social Biology 34, no. 3-4 (1987): 234-43; and S. Jay Olshansky and Brian Alt, “The Fourth Stage
of the Epidemiologic Transition: The Stage of Delayed Degenerative Diseases,” The Milbank Quarterly 64,
no. 3 (1986): 355-91.

15. U.S. Centers for Disease Control and Prevention, “Addressing Emerging Infectious Disease Threats: A
Prevention Strategy for the United States,” Morbidity and Mortality Weekly Report 43, no. RR-5 (1994): 1-
18.

16. Thomas McKeown, The Role of Medicine: Dream, Mirage or Nemesis? (Princeton, NJ: Princeton University,
1979).

17. National Center for Health Statistics, Vital Statistics of the United States, 1989, vol. 2, Mortality, Part A
(Washington, DC: U.S. Government Printing Office, 1993): Table 6-5; and Joyce A. Martin, Betty L.
Smith, T.J. Mathews, and Stephanie J. Ventura, “Births and Deaths: Preliminary Data for 1998,” National
Vital Statistics Reports 47, no. 25 (Hyattsville, MD: National Center for Health Statistics, 1999): 34.

18. Judith Treas, “Older Americans in the 1990s and Beyond,” Population Bulletin 50, no. 2 (Washington,
DC: Population Reference Bureau, 1995): 4; and  U.S. Census Bureau, “Resident Population Estimates
of the United States by Age and Sex: April 1, 1990 to August 1, 1999.” Accessed online at
http://www.census.gov/population/estimates/nation/intfile2-1.txt, on Oct. 19, 1999.

19. Mervyn Susser, “Epidemiology in the United States After World War II: The Evolution of Technique,”
Epidemiologic Reviews 7 (1985): 147-77.

20. World Health Organization (WHO), “The Global Eradication of Smallpox. Final Report of the Global
Commission for the Certification of Smallpox Eradication,” History of International Public Health, no. 4
(Geneva: WHO, 1980).

21. Brian MacMahon and Dimitrios Trichopoulos, Epidemiology: Principles and Methods, 2d ed. (Boston:
Little, Brown, 1996): 26-29.

22. U.S. Department of Health and Human Services, National Death Index User’s Manual, DHHS Publication
no. (PHS) 90-1148 (Hyattsville, MD: National Center for Health Statistics, 1990).

23. Kyle Steenland, Sue Nowlin, Brent Ryan, and Steven Adams, “Use of Multiple-Cause Mortality Data in
Epidemiologic Analyses: U.S. Rate and Proportion Files Developed by the National Institute for
Occupational Safety and Health and the National Cancer Institute,” American Journal of Epidemiology 136,
no. 7 (1992): 855-62.

24. Carl W. Tyler, Jr., and Joan M. Herold, “Public Health and Population,” in Maxcy-Rosenau-Last Public
Health and Preventive Medicine, ed. John M. Last, 13th ed. (Norwalk, CT: Appleton and Lange, 1992): 41-
53.

25. Carl W. Tyler, Jr., and John M. Last, “Epidemiology,” in Maxcy-Rosenau-Last Public Health and Preventive
Medicine: 11-39.

26. Lu Ann Aday, Designing and Conducting Health Surveys: A Comprehensive Guide (San Francisco: Jossey-Bass,
1989).

27. Paul S. Levy and Stanley Lemeshow, Sampling of Populations: Methods and Applications (New York: John
Wiley and Sons, 1991).



42

28. Sandra L. Putnam and Ian R.H. Rockett, “Parental Alcoholism as a Risk Factor in Children’s Illness and
Injury.” (Paper presented at the Annual Meetings of the American Public Health Association, New
Orleans, October 1987).

29. Hildreth Rockett, “A Case of Haemolytic Streptococcal Meningitis, with Recovery,” British Journal of
Childhood Diseases 30, July-September (1933): 196-99.

30. Charles H. Hennekens and Julie E. Buring, Epidemiology in Medicine (Boston: Little, Brown, 1987).
31. Elizabeth W. Etheridge, Sentinel for Health: A History of the Centers for Disease Control (Berkeley, CA:

University of California, 1992).
32. J.L. Creech, Jr., and M.N. Johnson, “Angiosarcoma of Liver in the Manufacture of Polyvinyl Chloride,”

Journal of Occupational Medicine 16, no. 3 (1974): 150-51.
33. J.L. Mackie, “Mill’s Methods of Induction,” in The Encyclopedia of Philosophy vol. 5, ed. Paul Edwards

(New York: Collier Macmillan, 1967): 324-32.
34. Fitzhugh Mullan, Plagues and Politics: The Story of the United States Public Health Service (New York: Basic

Books, 1989).
35. John D. Boice and Richard R. Monson, “Breast Cancer in Women after Repeated Fluoroscopic

Examinations of the Chest,” Journal of the National Cancer Institute 59, no. 3 (1977): 823-32.
36. Thomas R. Dawber, The Framingham Study: The Epidemiology of Atherosclerotic Disease (Cambridge, MA:

Harvard University Press, 1980); and Merrill F. Elias, P.A. Wolf, R.B. D’Agostino, J. Cobb, and L.R.
White, “Untreated Blood Pressure Level Is Inversely Related to Cognitive Functioning: The
Framingham Study,” American Journal of Epidemiology 138, no. 6 (1993): 353-64.

37. David Christie, Kaye Robinson, Ian Gordon, and Ian Rockett, “Health Watch: The Australian Petroleum
Industry Health Study Surveillance Programme,” Medical Journal of Australia 141 (Sept. 15, 1984): 331-
34.

38. Nancy V. Hicks, “Daniel 1:3-20. The First Dietary Intervention Study,” in Episource: A Guide to Resources in
Epidemiology, eds. Roger H. Bernier and Virginia M. Mason (Roswell, GA: Epidemiology Monitor, 1991):
152-53.

39. James A. Lind, A Treatise of the Scurvy, in Three Parts (London: Millar, 1753), reprinted in Lind’s Treatise on
Scurvy by C. P. Stewart and D. Gutherie (Edinburgh, UK: University Press, 1953).

40. Charles H. Hennekens and Julie E. Buring, “Methodologic Considerations in the Design and Conduct
of Randomized Trials: The U.S. Physicians’ Health Study,” Controlled Clinical Trials 10 (1989): 142S-50S.

41. Multiple Risk Factor Intervention Trial Research Group, “Risk Factor Changes and Mortality Results,”
Journal of the American Medical Association 248, no. 12 (1982): 1465-77.

42. Steering Committee of the Physicians’ Health Study Research Group, “Final Report on the Aspirin
Component of the Ongoing Physicians’ Health Study,” New England Journal of Medicine 321, no. 3
(1989): 129-35.

43. JoAnn E. Manson, Meir J. Stampfer, Graham A. Colditz, Walter C. Willett, Bernard Rosner, F.E. Speizer,
and Charles H. Hennekens, “A Prospective Study of Aspirin Use and Primary Prevention of
Cardiovascular Disease in Women,” Journal of the American Medical Association 266, no. 4 (1991): 521-27.

44. Meir J. Stampfer, Julie E. Buring, Walter Willett, Bernard Rosner, K. Eberlein, and Charles H.
Hennekens, “The 2 x 2 Factorial Design: Its Application to a Randomized Trial of Aspirin and Carotene
in U.S. Physicians,” Statistics in Medicine 4 (1985): 111-16.

45. Sandra L. Putnam, Ian R.H. Rockett, and Miriam K. Campbell, “Methodological Issues in Community-
Based Alcohol-Related Injury Prevention Projects: Attribution of Program Effects,” in Experiences with
Community Action Projects: New Research in the Prevention of Alcohol and Other Drug Problems, eds. Thomas K.
Greenfield and Robert Zimmerman, CSAP Prevention Monograph-14, DHHS Publication no. (ADM)
93-1976 (Rockville, MD: Center for Substance Abuse Prevention, 1993): 31-39.

46. David B. Ast, Sidney B. Finn, and Isabel McCaffrey, “The Newburgh-Kingston Caries Fluorine Study:
Dental Findings After Three Years of Water Floridation,” American Journal of Public Health 40 (1950): 716-
24.

47. Bernard C.K. Choi and A. Lynn Noseworthy, “Classification, Direction, and Prevention of Bias in
Epidemiologic Research,” Journal of Occupational Medicine 34, no. 3 (1992): 265-71.

48. Boice and Monson, “Breast Cancer in Women.”
49. Kevin Sottak, “Epidemiology,” Harvard Public Health Review (Spring 1993): 28-35.
50. David G. Kleinbaum, Lawrence L. Kupper, and Hal Morgenstern, Epidemiologic Research: Principles and

Quantitative Methods (Belmont, CA: Lifetime Learning Publications, 1982).
51. Bruce K. Armstrong, Emily White, and Rodolfo Saracci, Principles of Exposure Measurement in Epidemiology

(New York: Oxford University Press, 1992).
52. Harvey Checkoway, Neil E. Pearce, and Douglas J. Crawford-Brown, Research Methods in Occupational

Epidemiology (New York: Oxford University Press, 1989).
53. R. Beaglehole, R. Bonita, and T. Kjellstrøm, Basic Epidemiology (Geneva: World Health Organization,

1993).
54. Samuel L. Rotenberg, “Environmental Health Issues,” in Preventive Medicine and Public Health, ed. Brett J.

Cassens, 2d ed. (Baltimore: Williams and Wilkins, 1992): 285-324.
55. Gilbert Martin-Bouyer, Roger Lebreton, Maurice Toga, Paul D. Stolley, and Jean Lockhart, “Outbreak of

Accidental Hexachlorophene Poisoning in France,” The Lancet 1 (Jan. 9, 1982): 91-95.
56. Mervyn Susser, “What Is a Cause and How Do We Know One?  A Grammar for Pragmatic

Epidemiology,” American Journal of Epidemiology 133, no. 7 (1991): 635-48.
57. Sven Hernberg, Introduction to Occupational Epidemiology (Chelsea, MI: Lewis Publishers, 1992).
58. Armstrong, White, and Saracci, Principles of Exposure Measurement.
59. George J. Annas and Michael A. Grodin, eds., The Nazi Doctors and the Nuremberg Code: Human Rights in

Human Experimentation (New York: Oxford University Press, 1992).



43

60. Joan P. Porter, “CIOMS Issues New International Ethics Guidelines,” Epidemiology Monitor 14, no. 5
(1993): 1, 6.

61. James H. Jones, Bad Blood: The Tuskegee Syphilis Experiment,  expanded ed. (New York: The Free Press,
1993).

62. Robert J. Levine, Ethics and Regulation of Clinical Research, 2d ed. (Baltimore and Munich: Urban and
Schwarzenberg, 1986).

63. Colin L. Soskolne, “Epidemiology: Questions of Science, Ethics, Morality, and Law,” American Journal of
Epidemiology 129, no. 1 (1989): 1-18.

64. Ingram Olkin, “Reconcilable Differences:  Gleaning Insight from Conflicting Scientific Studies,” The
Sciences (July/August 1992): 30-36.

65. Maria Blettner, Willi Sauerbrei, Brigitte Schlehofer, Thomas Scheuchenpflug, and Christine
Friedenreich, “Traditional Reviews, Meta-Analysis and Pooled Analyses in Epidemiology,” International
Journal of Epidemiology 28, no. 1 (1999): 1-9.

66. Peter Armitage, “Some Topics of Current Interest in Clinical Trials,” Canadian Journal of Statistics 20, no.
1 (1992): 1-8.

67. Joseph Lau, E.M. Antman, J. Jimenez-Silva, B. Kupelnick, Frederick Mosteller, and Thomas C. Chalmers,
“Cumulative Meta-Analysis of Therapeutic Trials for Myocardial Infarction,” New England Journal of
Medicine 327, no. 4 (1992): 248-54.

68. Anthony J. McMichael, “Prisoners of the Proximate: Loosening the Constraints on Epidemiology in an
Age of Change,” American Journal of Epidemiology 149, no. 10 (1999): 887-97; Carl M. Shy, “The Failure of
Academic Epidemiology: Witness for the Prosecution,” American Journal of Epidemiology 145, no. 6
(1997): 479-84; Gary Taubes, “Epidemiology Faces its Limits,” Science 269, no. 5221 (1995): 164-69; and
Mark Parascandola, “Epidemiology: Second-Rate Science?” Public Health Reports 113,  no. 4 (1998): 312-
20. 

69. Christine B. Ambrosone and Fred F. Kadlubar, “Toward an Integrated Approach to Molecular
Epidemiology,” American Journal of Epidemiology 146, no. 11 (1997): 912-18; and Muin J. Khoury, Neil
Risch, and Jennifer L. Kelsey, “Genetic Epidemiology,” Epidemiologic Reviews 19, no. 1 (1997).

70. Douglas L. Weed, “Beyond Black Box Epidemiology,” American Journal of Public Health 88, no. 1 (1998):
12-14.

71. Neil Pearce, “Traditional Epidemiology, Modern Epidemiology, and Public Health,” American Journal of
Public Health 86, no. 5 (1996): 678-83.

72. Mervyn Susser, “Does Risk Factor Epidemiology Put Epidemiology at Risk? Peering into the Future,”
Journal of Epidemiology and Community Health 52, no. 10 (1998): 608-11.

73. McMichael, “Prisoners of the Proximate”: 887-97; and Shy, “The Failure of Academic Epidemiology”:
479-84.

74. Nancy Krieger, “Epidemiology and the Web of Causation: Has Anyone Seen the Spider?” Social Science
and Medicine 39, no. 7 (1994): 887-903; and Anthony J. McMichael and William J.M. Martens, “The
Health Impacts of Global Climate Change: Grappling with Scenarios, Predictive Models, and Multiple
Uncertainties,” Ecosystem Health 1, no. 1 (1995): 23-33. 

75. Paul R. Erhlich and Anne H. Erhlich, The Population Explosion (New York: Simon and Schuster, 1990);
and Anthony J. McMichael, Planetary Overload: Global Environmental Change and the Health of the Human
Species (Cambridge, UK: Cambridge University, 1993).

76. Stuart L. Pimm, Gareth J. Russell, John L. Gittleman, and Thomas M. Brooks, “The Future of
Biodiversity,” Science 29, no. 5222 (1995): 347-50.

77. McMichael, “Prisoners of the Proximate”: 887-97.



44

Suggested Resources
Alderson, Michael. An Introduction to Epidemiology. 2d. ed. London: MacMillan, 1983.

Bernier, Roger H., Virginia M. Watson, Amy Nowell, Brian Emery, and Jeanette St.
Pierre, eds. Episource: A Guide to Resources in Epidemiology. 2d. ed.  Roswell, GA:
Epidemiology Monitor, 1998.

Etheridge, Elizabeth W. Sentinel for Health: A History of the Centers for Disease Control.
Berkeley, CA: University of California Press, 1992.

Fletcher, Robert H., Suzanne W. Fletcher, and Edward H. Wagner. Clinical
Epidemiology: The Essentials. 3d. ed. Hagerstown, MD: Lippincott, Williams &
Wilkins, 1996.

Hopkins, Donald R. Princes and Peasants: Smallpox in History. Chicago: University of
Chicago Press, 1983.

Kelsey, Jennifer L., Alice S. Whitemore, and Alfred S. Evans. Methods in Observational
Epidemiology. 2d. ed. New York: Oxford University Press, 1996.

Last, John, ed. A Dictionary of Epidemiology. 3d. ed. New York: Oxford University
Press, 1995.

Levine, Robert J. Ethics and Regulation of Clinical Research. 2d. ed. Baltimore and
Munich: Urban and Schwarzenberg, 1986.

Meinert, Curtis L. Clinical Trials: Design, Conduct, and Analysis. New York: Oxford
University Press, 1986.

Rothman, Kenneth J., ed., and Sander Greenland. Modern Epidemiology. 2d. ed.
Philadelphia: Lippincott-Raven, 1998. 

Walker, Alexander M. Observation and Inference: An Introduction to the Methods of
Epidemiology. Newton Lower Falls, MA: Epidemiology Resources, 1991.

Web sites
U.S. Centers for Disease Control and Prevention (CDC):

http://www.cdc.gov

Human Health and Global Environmental Change, Consortium for International
Earth Science Information Network:
http://www.ciesin.org/TG/HH/hh-home.html

Epidemiology Virtual Library, University of California, San Francisco:
http://www.epibiostat.ucsf.edu/epidem/epidem.html 

National Library of Medicine’s free MEDLINE search engine:
http://www.ncbi.nlm.nih.gov/PubMed/

Epidemiology Supercourse, University of Pittsburgh:
http://www.pitt.edu/~super1/

EPIDEMIO-L-LISTSERV maintained by the Department of Epidemiology at the
University of Montreal, Canada:
listproc@cc.umontreal.ca



Recent Population 
Bulletins

Volume 54 (1999)
No. 3 America’s Racial and Ethnic
Minorities, by Kelvin M. Pollard and
William P. O’Hare

No. 2 Immigration to the United
States, by Philip Martin and Elizabeth
Midgley

No. 1 World Population Beyond
Six Billion, by Alene Gelbard, Carl
Haub, and Mary M. Kent

Volume 53 (1998)
No. 4 Injury and Violence: A
Public Health Perspective, by Ian
R.H. Rockett

No. 3 Population: A Lively
Introduction, by Joseph A. McFalls, Jr.

No. 2 Asian Americans: Diverse
and Growing, by Sharon M. Lee

No. 1 Population Change, 
Resources, and the Environment,
by Robert Livernash and 
Eric Rodenburg

Volume 52 (1997)
No. 4 Population and Reproduc-
tive Health in Sub-Saharan Africa,
by Thomas J. Goliber

No. 3 Generations of Diversity:
Latinos in the United States, by
Jorge del Pinal and Audrey Singer

No. 2 Infectious Diseases—New
and Ancient Threats to World
Health, by S. Jay Olshansky, Bruce
Carnes, Richard G. Rogers, and 
Len Smith

No. 1 Gender, Power, and
Population Change, by 
Nancy E. Riley

Volume 51 (1996)
No. 4 Population, Food, and
Nutrition, by William Bender and
Margaret Smith

No. 3 Women, Work, and Family
in America, by Suzanne M. Bianchi
and Daphne Spain

No. 2 A New Look at Poverty in
America, by William P. O’Hare

To read excerpts of selected PRB publications, go to: www.prb.org

To order PRB publications (discounts available):
Population Reference Bureau
1875 Connecticut Ave., NW, Suite 520
Washington, DC 20009
Phone: 1-800/877-9881
Fax: 202/328-3937
E-mail: popref@prb.org
Web site: www.prb.org

Related PRB Publications
For more information on health and population issues, here are several other
PRB publications on this important topic:

Injury and Violence: A Public Health Perspective, by Ian R.H.
Rockett
Injuries are a leading cause of death and disability worldwide, especially for young
people. The United States is at the forefront of efforts to prevent injuries—includ-
ing intentional injuries that lead to homicides and suicides as well as automobile
crashes and other mishaps that disable and kill thousands of Americans each year.
This Population Bulletin explores the ways that scientists study the factors that cause
injuries and how they determine what action is needed to prevent them.
(BUL53.4) $7.00

Infectious Diseases—New and Ancient Threats to World
Health, by S. Jay Olshansky, Bruce Carnes, Richard G. Rogers, and Len Smith
Humans won many victories in the ancient war against malaria, polio, smallpox,
and other infectious and parasitic diseases (IPDs) in the 20th century, but IPDs are
still a major cause of death in low-income countries. And, the fast pace of modern
life has spread previously unknown viruses—like HIV—to new populations. Some
older IPDs—such as tuberculosis—have evolved drug-resistant strains that threaten
public health in rich as well as poor countries. This Population Bulletin looks at the
role of IPDs in the mortality revolution of the last century and the factors favoring
their persistence in the next century. (BUL52.2) $7.00

Population: A Lively Introduction, by Joseph A. McFalls Jr.
This Population Bulletin discusses the basic forces of demographic change—fertility,
mortality, and migration—and explains the common rates and ratios used to meas-
ure them. The Bulletin also introduces major population-related issues such as envi-
ronmental degradation and poverty in the developing world. This new edition
updates discussions of race and ethnicity, interracial marriage, and aging and mor-
tality. (BUL53.3) $7.00

Population Handbook, by Arthur Haupt and Thomas Kane
This handbook is a quick guide to population dynamics for journalists, policymak-
ers, teachers, and students, and is an ideal companion to Population: A Lively
Introduction. The handbook explains how to calculate and use major rates, ratios,
and other measures—from the birth rate to the life table. It also includes a guide
to major population organizations (including Web site addresses) and tips on inter-
preting demographic data. (HBUS97) $10.00 Also available in an international
English edition and in Arabic, French, and Spanish.
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